An Efficient and Robust Eigenvalue Method for Small-Signal Stability Assessment in Parallel Processing

Jorge M. Campagnolo Nelson Martins COPPE/UFRJ

CEPEL

Djalma M. Falcão COPPE/UFRJ

Rio de Janeiro - BRAZIL

Parallel Processing in Small-Signal Stability Analysis and Control

Methodology:

Partial Eigensolution of Large Matrices

On-line and Off-line Applications:

- Electromechanical Stability
- Voltage Stability

Parallel Processing ...

- Algorithms for Partial Eigensolution are Parallelizable
- Parallel Computers are Available
- Only way to achieve required speed at reasonable cost

Results

$$Test\ System$$
 : $\left\{ egin{array}{ll} 6000\ equations \\ 1200\ state\ variables \end{array} \right.$

$$Computer : iPSC/860 \begin{cases} 1 \ node \\ 4 \ nodes \\ 8 \ nodes \end{cases}$$

$$Algorithms \ Utilized : \left\{ egin{array}{ll} Lop-sided \ Simul-taneous \ Iteration \ Bi-Iteration \ Hybrid \end{array}
ight.$$

Algorithms Utilized

Lop-sided Simultaneous Iteration (LSSI)

- Sequential code available
- Parallel code reported in [1]

Bi-Iteration Algorithm (BI)

- Developed for non-symmetric matrices
- Obtains both right and left eigenvectors
- Quadratic convergence rate for eigenvalues
- Linear convergence rate for eigenvectors
- Requires more computational effort and memory space than LSSI

Hybrid Algorithm

- Combination of two methods
 - Bi-iteration $(1^{st} stage)$
 - Inverse Iteration $(2^{nd} stage)$
- Specially suited for parallel processing
- Excellent performance in sequencial processing

Location of System Eigenvalues and Shifts

- x-converged eigenvalues

Eigenvalue Convergence for Different Shifts

− complex shiftsx − eigenvalues

LSSI Computation Time

(8 trial vectors and $K_f = 3$)

Computation Times for Parallel LSSI and Parallel BI Algorithms

$$lacksquare$$
 - BI q - $complex$ $shift$ $lacksquare$ - LSSI

(Convergence for 3 eigenvectors out of 4 trial vectors)

Computation Times for Parallel Hybrid and Parallel LSSI Algorithms

$$lacktriangledown$$
 - Hybrid q - $complex$ $shift$ - LSSI

(Convergence for 3 eigenvectors out of 4 trial vectors)

Comparative Results in Sequential Computation

- Hybrid
$$q$$
 - $complex$ $shift$

(Convergence for 6 eigenvectors out of 8 trial vectors)

Comparative Results in Sequential Computation

HybridLSSI

(25 % of Guard Vectors)

Power System Parallel Eigensolutions

- Hybrid algorithm, a simple but definite evolution
- A revolutionary method will soon be published

Location of System Eigenvalues

