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Abstract This Chapter offers an introduction to Model Order Reduction (MOR). It

gives an overview on the methods that are mostly used. It also describes the main

concepts behind the methods and the properties that are aimed to be preserved. The

Sections are in a prefered order for reading, but can be read independentlty. Sec-

tion 3.1, written by Michael Striebel, E. Jan W. ter Maten, Kasra Mohaghegh and

Roland Pulch, overviews the basic material for MOR and its use in circuit simu-

lation. Issues like Stability, Passivity, Structure preservation, Realizability are dis-

cussed. Projection based MOR methods inlude Krylov-space methods (like PRIMA

and SPRIM) and POD-methods. Truncation based MOR includes Balanced Trunca-

tion, Poor Man’s TBR and Modal Truncation.

Section 3.2, written by Joost Rommes and Nelson Martins, focuses on Modal Trun-

cation. Here eigenvalues are the starting point. The eigenvalue problems related to

large-scale dynamical systems are usually too large to be solved completely. The

algorithms described in this section are efficient and effective methods for the com-

putation of a few specific dominant eigenvalues of these large-scale systems. It is

shown how these algorithms can be used for computing reduced-order models with

modal approximation and Krylov-based methods.

Section 3.3, written by Maryam Saadvandi and Joost Rommes, concerns passivity

preserving model order reduction using the spectral zero method. It detailedly dis-

cusses two algorithms, one by Antoulas and one by Sorenson. These two approaches

are based on a projection method by selecting spectral zeros of the original transfer

function to produce a reduced transfer function that has the specified roots as its

spectral zeros. The reduced model preserves passivity.

Section 3.4, written by Roxana Ionutiu, Joost Rommes and Athanasios C. Antoulas,

refines the spectral zero MOR method to dominant spectral zeros. The new model

reduction method for circuit simulation preserves passivity by interpolating domi-

nant spectral zeros. These are computed as poles of an associated Hamiltonian sys-

tem, using an iterative solver: the subspace accelerated dominant pole algorithm

(SADPA). Based on a dominance criterion, SADPA finds relevant spectral zeros

and the associated invariant subspaces, which are used to construct the passivity

preserving projection. RLC netlist equivalents for the reduced models are provided.

Section 3.5, written by Roxana Ionutiu and Joost Rommes, deals with synthesis of

a reduced model: reformulate it as a netlist for a circuit. A framework for model

reduction and synthesis is presented, which greatly enlarges the options for the re-

use of reduced order models in circuit simulation by simulators of choice. Especially

when model reduction exploits structure preservation, we show that using the model

as a current-driven element is possible, and allows for synthesis without controlled

sources. Two synthesis techniques are considered: (1) by means of realizing the

reduced transfer function into a netlist and (2) by unstamping the reduced system

matrices into a circuit representation. The presented framework serves as a basis for

reduction of large parasitic R/RC/RCL networks.



3 Model Order Reduction — Methods, Concepts and Properties 3

Co-operations between the various co-authors

The subactivity on Model Order Reduction (MOR) of the COMSON project1 was

greatly influenced by interaction with additional research on MOR, first at Philips

Research Laboratories and (from october 2006 on) at NXP Semiconductors (both

in Eindhoven). There was direct project work with the TU Eindhoven, with the

Bergische Universität Wuppertal and with the Royal Institute of Technology (KTH)

in Stockholm:

• R. IONUTIU: Model order reduction for multi-terminal Systems - with appli-

cations to circuit simulation. Ph.D.-Thesis, TU Eindhoven, 2011, http://

alexandria.tue.nl/extra2/716352.pdf.

• M. SAADVANDI: Passivity preserving model reduction and selection of spec-

tral zeros. MSc. Thesis, Royal Institute of Technology (KTH), Stockholm. Also

published as Technical Note NXP-TN-2008/00276, Unclassified Report, NXP

Semiconductors, Eindhoven, 2008. [In September 2012, Maryam Saadvandi did

complete a Ph.D.-Thesis at KU Leuven, Belgium, on Nonlinear and parametric

model order reduction for second order dynamical systems by the dominant pole

algorithm.]

• M.V. UGRYUMOVA: Applications of Model Order Reduction for IC Model-

ing. Ph.D.-Thesis, TU Eindhoven, 2011, http://alexandria.tue.nl/

extra2/711015.pdf.

• A. VERHOEVEN: Redundancy reduction of IC models by multirate time-integra-

tion and model order reduction. Ph.D.-Thesis, TU Eindhoven, 2008,

http://alexandria.tue.nl/extra2/200712281.pdf.

• T. VOSS: Model reduction for nonlinear differential algebraic equations, MSc.

Thesis, University of Wuppertal, 2005. Unclassified Report PR-TN-2005/00919,

Philips Research Laboratories, September 2005.

[Afterwards, Thomas Voß did complete a Ph.D.-Thesis at the Rijksuniversiteit

Groningen, the Netherlands, on Port-Hamiltonian modeling and control of piezo-

electric beams and plates: application to inflatable space structures, 2010,

http://catalogus.rug.nl/DB=1/SET=1/TTL=4/REL?PPN=326-

918639.]

Here Roxana Ionutiu was partially funded by the COMSON project. Apart from TU

Eindhoven she also worked with Thanos Antoulas at the Jacobs University in Bre-

men. Roxana Ionutiu appears several times as co-author in this chapter and in the

following ones. Also Maryam Saadvandi appears as co-author of a section. Work by

the others is found in the reference lists at each section.

Parallel to the COMSON Project research on MOR was done within the O-MOORE-

NICE! project2. The Marie Curie Fellows, Luciano De Tommasi (University of

1 Coupled Multiscale Simulation and Optimization in Nano-electronics, COMSON - EU-FP6

MCA-RTN Research and Training Network Project, 2006-2010, http://www.comson.eu/.
2 Operational MOdel Order REduction for Nanoscale IC Electronics (O-MOORE-NICE!) - EU-

FP6 MCA-ToK Transfer of Knowledge Project, 2007-2010, http://www.tu-chemnitz.
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Antwerp), Davit Harutyunyan (TU Eindhoven), Joost Rommes (NXP Semiconduc-

tors), and Michael Striebel (Chemnitz University of Technology), interacted ac-

tively with the COMSON PhD-students. They contribute to several sections as co-

authors, together with researchers from the staff from NXP Semiconductors (Eind-

hoven), TU Eindhoven, Bergische Universität Wuppertal and the Politehnica Univ.

of Bucharest.

The Politehnica Univ. of Bucharest greatly acknowledges co-operation with Jorge

Fernandez Villena and Luis Miguel Silveira of INESC-ID in Lisbon. They appear

as co-author in the next chapter. Jorge Fernandez Villena was partially funded by

the COMSON project. Work in Bucharest and in Lisbon also did benefit from fi-

nancial support during earlier years from the following complementary projects:

FP6/Chameleon, FP5/Codestar, CEEX/nEDA, UEFISCSU/IDEI 609/16.01.2009

and POSDRU/89/1.5/S/62557.

The fourth co-author acknowledges the ENIAC JU Project /2010/SP2(Wireless

communication)/270683-2 Artemos, Agile Rf Transceivers and front-Ends for future

smart Multi-standard cOmmunications applicationS, http://www.artemos.

eu.

The COMSON project did directly lead to four Ph.D.-Theses on MOR-related top-

ics:

• Z. ILIEVSKI: Model order reduction and sensitivity analysis. Ph.D.-Thesis, TU

Eindhoven, 2010, http://alexandria.tue.nl/extra2/201010770.

pdf.

• S. KULA: Reduced order models of interconnects in high frequency integrated

circuits. Ph.D.-Thesis, Politehnica Univ. of Bucharest, 2009.

• K. MOHAGHEGH: Linear and nonlinear model order reduction for numerical

simulation of electric circuits. Ph.D.-Thesis, Bergische Universität Wuppertal,

Germany. Available at Logos Verlag, Berlin, Germany, 2010.

• A. ŞTEFĂNESCU: Parametric models for interconnections from analogue high

frequency integrated circuits. Ph.D.-Thesis, Politehnica Univ. of Bucharest, 2009.

3.1 Circuit Simulation and Model Order Reduction

3Speaking of ”circuit models”, we refer to models of electrical circuits derived

by a network approach. In circuit simulation the charge-oriented modified nodal

analysis (MNA) is a prominent representative of network approaches used to au-

tomatically create mathematical models for a physical electrical circuit. In the fol-

de/mathematik/industrie_technik/projekte/omoorenice/index.php?

lang=en
3 Section 3.1 has been written by: Michael Striebel, E. Jan W. ter Maten, Kasra Mohaghegh and

Roland Pulch. For additional details we refer to the Ph.D.-Thesis [33] of the third author.
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lowing we give a short introduction to circuit modeling with MNA. For a detailed

discussion we refer to [21].

In charge-oriented MNA, voltages, currents, electrical charges and magnetic

fluxes are the quantities that describe the activity of a circuit. The electrical circuit

to be modelled is considered to be an aggregation of basic network elements: the

ohmic resistor, capacitor, inductor, voltage source and current source. Real phys-

ical circuit elements, especially semiconductor devices, are replaced by idealised

network elements or so-called ”companion models”. The basic network elements

correlate the network quantities. Each basic element is associated to a characteristic

equations:

• resistor: I = r(U) (linear case: I = 1
R
·U)

• capacitor: I = q̇ with q = qC(U) (linear case: I =C ·U̇)

• inductor: U = φ̇ with φ = φL(I) (linear case: U = L · İ)

• voltage source: U = v(t) (controlled source: U = v(Uctrl, Ictrl, t))
• current source: I = ı(t) (controlled source: I = ı(Uctrl, Ictrl, t))

where U is the voltage drop across the element’s terminal, I is the current flowing

through the element, q is the electric charge stored in a capacitor and φ is the mag-

netic flux of an inductor. The dot ˙ on top of a quantity indicates the usual time

derivative d/dt on that quantity.

All wires, connecting the circuit elements are considered to be electrically ideal,

i. e., no wire possesses any resistance, capacitance or inductance. Thereby, also the

volume expansion of the circuit becomes irrelevant, the electrical system is con-

sidered being a lumped circuit.The circuit’s layout, defined by the interconnects

between elements, is thus reduced to its conceptional structure, which is called net-

work topology.

The network’s topology consists of branches and nodes. Each network element

is regarded as a branch of the circuit and its terminals are the nodes by which it is

connected to other elements. Assigning a direction to each branch – the direction

of the current traversing the corresponding element – and a serial number to each

node, we end up with a directed graph representing the network. As any directed

graph, the network can be described by an incidence matrix A. This matrix has as

many columns as there are branches, i. e., elements and as many rows as there are

nodes in the circuit. Each column of the matrix has one entry +1 and one entry −1,

displaying the start and end point of the branch. As all other entries are 0, the matrix

A is sparse.

Usually, one circuit node is tagged as ground node. As a consequence, each

branch voltage U between two nodes l an m can be expressed by the two node volt-

ages el and em, which are the voltage differences between each node and the ground

node. From this agreement, the node voltage of the ground node is constantly 0 and

therefore the information stored in the corresponding row of the incidence matrix

becomes redundant and this very row can be removed. Hence, frequently by the

term incidence matrix, one refers to the reduced matrix A, given by removing the

row corresponding to the ground node.
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As each branch of the network represents one of the five basic network element

resistor (R), capacitor (C), inductor (L), voltage and current source (V and I, re-

spectively), the indicence matrix can be described as an assembly of element related

incidence matrices:

A = (AC,AR,AL,AV ,AI) ,

with AΩ ∈ {0,+1,−1}ne×nΩ for Ω ∈ {C,R,L,V, I}. Here, ne is the number of nodes

(without the ground node) and nC, . . . ,nI are the cardinalities of the sets of the dif-

ferent basic elements’ branches.

The Kirchhoff’s laws, which relate the branch voltages in a loop and the currents

accumulating in a node, namely Kirchhoff’s voltage law and Kirchhoff’s current

law, respectively, are the final component for setting up the MNA network equations:

AC

d

dt
q+ARr(AT

Re)+ALıL +AV ıV +AI ı(t) = 0, (3.1a)

d

dt
φ −AT

L e = 0, (3.1b)

v(t)−AT
V e = 0, (3.1c)

q−qC(A
T
Ce) = 0, (3.1d)

φ −φ L(ıL) = 0. (3.1e)

It is worthwile to highlight the subequations (3.1a) and (3.1c). The former is the

personification of Kirchhoff’s current law, stating that for each network node the

sum of branch currents meeting is identically zero. The latter reflects the function-

ality of voltage sources: dictating branch voltages.

The unknowns q,φ ,e, ıL, ıV , i. e., the charges, fluxes, node voltages and currents

traversing inductors and voltage sources, respectively – each of them functions of

time t – are combinded to the state vector x(t) ∈ R
n of unknowns, of dimension

n = nC + nL + ne + nL + nV . Then, the network equations (3.1) can be stated in a

compact form:

d

dt
q(x(t))+ j(x(t))+Bu(t) = 0, (3.2)

where q, j : Rn →R
n describe the contribution of reactive and nonreactive elements,

respectively4. The excitations defined by the voltage- and current-sources are com-

bined to the vector u(t) ∈ R
m with m = nV +nI . The excitations are assigned to the

corresponding nodes and branches by the matrix B ∈ R
n×m.

If the circuit under considerations contains only elements with a linear character-

istic equation, the network equations can be written as5

4 Note that the meaning q in (3.1) and (3.2) is different: in the prior it is an unknown, in the latter

it is a mapping.
5 Note that A in (3.3a) does not refer to the incidence matrix A. Furthermore the composition

of the unknown x in (3.2) and (3.3a) can be different. In the latter, taking into account the linear
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Eẋ(t)+Ax(t)+Bu(t) = 0, (3.3a)

with

E =




ACC AT
C 0 0

0 L 0

0 0 0


 , A =




ARG AT
R AL AV

−AT
L 0 0

−AT
V 0 0


 , B =




AI 0

0 0

0 InV


 , (3.3b)

where C ,L ,G are basically diagonal matrices containing the individual capacitors,

inductances and conductances (inverse resistances) of the basic network elements.

InV
is the identitiy matrix in R

nV×nV .

We arrive at this formulation by eliminating the charges and fluxes. Hence the un-

known state vector here is x=(eT , ıTL , ı
T
V )

T and the excitation vector is u=(ıTI ,v
T )T .

It is straightforward to see that the structure of the matrices E,A ∈R
n×n and B ∈

R
n×m is determined by the element related incidence matrices AC,AR,AL,AV ,AI .

As there is usually only a week linkage amongst the network node, i. e., nodes are

connected directly to only a few other nodes, these incidence matrices are sparse and

so are the system matrices in (3.3a) and the Jacobian matrices dq/dx,dj/dx∈R
n×n

of the element functions in (3.2), respectively.

In general, real circuit designs contain a large number of transistors. In the course

of setting up the network equations such semiconductor devices are replaced by

companion models that consist of a larger number of the basic network elements.

Here especially resistors with nonlinear characteristics emerge. Hence, the ”math-

ematical image” of an integrated circuit is usually a nonlinear network equation of

the form (3.2).

However, also linear network equations of the form (3.3a) are fundamental prob-

lems in the design process. As mentioned above, one disregards the volume exten-

sion of a circuit and considers wires as electrically ideal. At the end of the design

process, however, there will be a physical integrated circuit. Even on the smallest

dies there are kilometers of wiring. These wires do have an electric resistance. As

the actual devices are getting small and smaller, capacitive effects introduced by

neighbouring wires can not be neglected just as little as inductive effects arising

from increasing clock rates.

In fact these issues are not neglected. At least at the end of the design process,

when the layout of the chip has to be determined these effects are taken into ac-

count. In the parasitic extraction from the routing on the chip an artificial linear

network is extracted which again is assumed to be a lumped and comprise of ideal

wires. However, the resistances, capacitances and inductances that are present there

describe the effects caused by the wiring on the actual circuit. A characteristic of

these artificial networks is their large dimension: here n can easily be in the range

of 106.

characteristics for capacitors and inductors, the time derivatives of the charges and fluxes can be

expressed by the time derivative of the node volages e and the inductor current ıL directly. In this

case the unknow state vector amounts to x = (eT , ıTL , ı
T
V )

T ∈ R
n with n = ne +nV +nL.
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The impact of the effects on the behaviour of the actual circuit are accounted for

by coupling the linear parasitic model to the underlying circuit design.

If the electrical circuit comprises reactive elements, i. e., capacitors and induc-

tors, the network equation (3.2) or (3.3a), respectively, forms a dynamical problem

for the unknown state vector x. Usually, however, the system matrix E, or the Ja-

cobian dq/dx, respectively, does not have full rank6. Dynamical systems with this

property, i. e., systems consisting of differential and algebraic equations are called

differential algebraic equations (DAE), or descriptor systems. DAEs differ in several

senses from purely differential equations, causing problems in various aspects. A re-

quirement for the solvability of the network equation is the regularity of the matrix

pencil {E,A}. The matrix pencil is called regular, if the polynomial det(λE+A)
does not vanish identically. Otherwise {E,A} is called singular matrix pencil. Then

a normal initial-value problem for the linear DAE (3.3a) has none or infinitely many

solutions. The regularity of the matrix pencil can be checked by examining the ele-

ment related incidence matrices [16].

In the context of numerical time integration, needed to solve the network prob-

lem in time domain, worthwhile stressing that the initial value has to be chosen

properly – x(0) has to satisfy the algebraic constraints – and that numerical pertur-

bations can be amplified dramatically. Hence, numerical methods have to match the

requirements posed by the differential-algebraic structure.

For a detailed analysis of DAEs we refer to the textbook [28]. A detailed discus-

sion of solving DAEs can be found in the textbook [23].

3.1.1 Input-Output Systems in Circuit Simulation

We recall that the origin of the network equations in nonlinear or linear form is a

real circuit design, ment to be simulated, i. e., tested with respect to its performance

under different circumstances. Nowadays, complex integrated circuits are usually

not designed from scratch by a single engineer. In fact, large electrical circuits are

usually developed in a modular way. In radio frequency applications, for instance,

analogue and digital subcircuits are connected to each other. In general several sub-

units of different functionality, e. g., one providing stable oscillations another one

amplifying a signal, are developed separately and glued together. Hence, subunits

possess a way of communication with other subunits, the environment they are em-

bedded in.

To allow for a communication with an environment, the network model (3.2) (or

(3.3a)) has to be augmented and transfered to a system that can receive and transmit

information. Abstractly, the output of a system can be defined as a function of the

state and the input:

6 This is easy to see from inspecting the first subequation – the node-current relation – of the MNA

equation (3.1): a network node for instance, that is not the starting or end point of a capacitor branch

causes a row equal to zero in the incidence matrix AC and therefore the node-current relation for

that node is an algebraic equation only.
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y(t) = h(x(t),u(t)) ∈ R
p.

In circuit simulation, however, usually the output is a linear relation of the form:

y(t) = Cx(t)+Du(t),

with the output matrix C ∈ R
p×n and the feedthrough matrix D ∈ R

p×m.

The excitation, we mentioned above, i. e., the last term Bu(t) in the network

model (3.2) (or (3.3a)) can be understood as information imposed on the system, in

the form of branch currents and node voltages. Therefore we call u(t) the input and

B the input matrix to the system.

Hence, an input-output system in electrical circuit simulation is given in the form

0 = Eẋ(t)+Ax(t)+Bu(t), (3.4a)

y(t) = Cx(t)+Du(t), (3.4b)

if only linear elements form the system. If also nonlinear elements are present, we

arrive at systems of the form:

0 =
d

dt
q(x(t))+ j(x(t))+Bu(t), (3.5a)

y(t) = Cx(t)+Du(t). (3.5b)

The input to state mapping (3.4a) and (3.5a), respectively, is a relation defined by

a dynamical system. Therefore, the representation of the input-output system (3.4)

and (3.5), respectively, is said to be given in state space formulation. The dimension

n of the state space is referred to as the order of the system.

Frequently the state space formulation in circuit design exhibits a special struc-

ture.

• Often there is no direct feedthrough of the input to the output, i. e.

D = 0 ∈ R
p×m. (3.6a)

• We often observe

p≡ m and C = BT ∈ R
m×n. (3.6b)

In full system simulation, individual subcircuit models are connected to each

other. To allow for an information exchange, done in terms of currents and volt-

ages, each subcircuit possesses a set of terminals – a subset of the unit’s pins.

From a subcircuit’s point of view incoming information is either a current being

added to or a voltage drop being imposed to the terminal nodes. The former

corresponds to adding a current source term to (3.1a), the latter corresponds to

adding a voltage source to (3.1c). Information returned by the subsystem is the

voltage at the terminal node in the former case or the current traversing that

artificial voltage source in the latter case. Having a detailed look at the MNA

network equations (3.1) and the composition of the state vector x(t), it is easy to
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understand that in this setup, assuming that there are no additional sources in the

subcircuits, the output matrix is the transpose of the input matrix.

3.1.2 The need for Model Order Reduction

Clearly, mathematical models for a physical circuit are extracted for a purpose.

In short, the manufacturing process of an electrical circuit starts with an idea of what

the physical system should do and ends with the physical product. In-between there

is a, usually iterative, process of conceptual designing the circuit in the form of a

circuit schematic, that comprises parameters defining the layout and nominal values

of circuit elements and, choosing the parameters, testing the design, adapting the

parameter, . . . , etc.

Testing the design means to analyse its behaviour. There are several types of

analysis we briefly want to mention in the following. For a more detailed discussion

we refer to [21].

• Static (DC) analysis searches for the point to which the system settles in an

equilibrium or rest condition. This is characterised by d/dt x(t) = 0.

• Transient analysis computes the response y(t) to the time varying excitation u(t)
as a function of time.

• (Periodic) steady-state analysis, also called frequency response analysis, deter-

mines the response of the system in the frequency domain to an oscillating, i. e.,

sinusoidal input signal.

• Modal analysis finds the system’s natural vibrating frequency modes and their

corresponding modal shapes;

• Sensitivity analysis determines the changes of the time response and/or the fre-

quency to variations in the design parameters.

Transient analysis is run in the time domain. Here the challenge is to numerically

integrate a very high-dimensional DAE problem.

Both the frequency response and the modal analysis are run in the frequency do-

main. Hence, a network description in the frequency domain is needed. As this is

basically defined only for linear systems7 we concentrate on linear network prob-

lems of the form (3.4). The Laplace transform is the tool to get from the time to the

frequency domain.

Recall that for a function f : [0,∞)→ C with f (0) = 0, the Laplace transform

F : C→ C is defined by

F(s) := L { f}(s) =
∫ ∞

0
f (t)e−stdt.

7 Applying those types of analysis to nonlinear problems involves a linearisation about some point

of interest x in the state space.
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For a vector-valued function f = ( f1, . . . , fq)
T , the Laplace transform is defined

component-wise: F(s) = (L { f1}(s), . . . ,L { fq}(s))T .

The physically meaningful values of the complex variable s are s = iω where

ω ≥ 0 is referred to as the (angular) frequency. Taking the Laplace transform of

the time domain representation of the linear network problem (3.4) we obtain the

following frequency domain representation:

0 = sEX(s)+AX(s)+BU(s),

Y(s) = CX(s)+DU(s),
(3.7)

where X(s),U(s),Y(s) are the Laplace transforms of the states, the input and the

output, respectively. Note that we assumed zero initial conditions, i. e., x(0) = 0,

u(0) = 0 and y(0) = 0.

Eliminating the variable X(s) in the frequency domain representation (3.7) we

see that the system’s response to the input U(s) in the frequency domain is given by

Y(s) = H(s)U(s)

with the matrix-valued transfer function

H(s) =−C(sE+A)−1
B+D ∈ C

p×m. (3.8)

The evaluation of the transfer function is the key to the frequency domain based

analyses, i. e., the steady-state analysis and the modal frequency analysis. The key

to the evaluation of the transfer function, in turn, is the solution of a linear system

with the system Matrix (sE+A) ∈ C
n×n.8

Note that at the very core of any numerical time integration scheme applied in

transient simulation we have to solve as well linear equations with system matrices

of the form αE+A were α ∈ R depends on some coefficient characteristic to the

method and the stepsize used.

It is the order n of the problem, i. e., the dimension of the state space that de-

termines how much computational work has to be spend to compute the p output

quantities. Usually, the order n in circuit simulation is very large, whereas the di-

mension of the output is rather small.

The idea of model order reduction (MOR) is to replace the high dimensional

problem by one of reduced order such that the reduced order model produces an

output similar to the output of the original problem when excited with the same

input.

Before we give an overview of some of the most common MOR techniques we

specify the requirement a reduced order model should satisfy. Again, we just briefly

describe some concepts. For a more detailed discussion we refer to the textbook [1].

8 Note that here we see the necessity of {E,A} being a regular matrix pencil.
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Approximation

The output of the ersatz model should approximate the output of the original

model for the same input signal. There are various measures for ”being an approx-

imation”. In fact these different viewpoints form the basis for different reduction

strategies.

We give first a Theorem (for an ODE) that confirms how an approximation in the

frequency domain leads to an accurate result in the time domain. Let Iω ⊂ R be

a closed interval (but may be Iω = {ω0} or Iω = R). For convenience we assume

single input u(t) and single output y(t), with transfer function H(s) in the frequency

domain between the Laplace transforms U(s) and Y (s). Let H̃(s) be the approxima-

tion to H(s) which gives Ỹ (s) = H̃(s)U(s) and ỹ(t) as the output approximation in

the time domain.

Theorem 3.1. Let ||u(t)||L2([0,∞)) <∞ and U(iω) = 0 for ω /∈ Iω . If the system (3.4a)

consists of ODEs, then we have the estimate

max
t>0

|y(t)− ỹ(t)| ≤ (
1√
2π

∫

Iω

|H(iω)− H̃(iω)|2dω)
1
2 (

∫ ∞

0
|u(t)|2dt)

1
2 . (3.9)

Proof: We obtain by using the Cauchy-Schwarz inequality in L2(Iω)

max
t>0

|y(t)− ỹ(t)| ≤ max
t>0

| 1

2π

∫

R

(Y (iω)− Ỹ (iω))eiωtdω|

≤ max
t>0

1

2π

∫

R

|Y (iω)− Ỹ (iω)| · |eiωt | dω

=
1

2π

∫

R

|H(iω)− H̃(iω)| · |U(iω)| dω

=
1

2π

∫

Iω

|H(iω)− H̃(iω)| · |U(iω)| dω

≤ 1

2π
(
∫

Iω

|H(iω)− H̃(iω)|2dω)
1
2 (

∫

Iω

|U(iω)|2 dω)
1
2

≤ (
1√
2π

∫

Iω

|H(iω)− H̃(iω)|2dω)
1
2 (

∫ ∞

0
|u(t)|2dt)

1
2 .

This completes the proof. �

We note that for Iω = R the above error estimate is already found in [22], also for

parameterized problems. In [41] the more general case Iω is considered and applied

to Uncertainty Quantification for parameterized problems. In MOR the error esti-

mate becomes often small in an interval Iω sufficiently close to the used expansion

point.

Besides producing similar outputs, the reduced order model should behave simi-

lar to the original model in various aspects, which we discuss next.
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Stability

One of the principal concepts of analyzing dynamical systems is its stability.

An autonomous dynamical system, i. e., a system without input is called stable

if the solution trajectories are bounded in the time domain. For a linear autonomous

system the system matrices determine whether it is stable or unstable. Considering

for instance the network equation (3.3a) with B ≡ 0 we have to calculate the gen-

eralized eigenvalues9 {λi(A,−E), i = 1, . . . ,n} of the matrix pair (A,−E) to decide

whether or not the system is stable. The system is stable if, and only if, all gener-

alized eigenvalues have non-positive real parts and all generalized eigenvalues with

Re(λi(A,−E)) = 0 are simple.

Passivity

For input-output systems of the form (3.4), stability is not strong enough. If non-

linear components are connected to a stable system it can become unstable.

For square systems, i. e., system where the number of inputs is equal to the num-

ber of outputs, p = m, a property called passivity can be defined. This property is

much stronger than stability: it means that a system is unable to generate energy.

Here, an inspection of the system’s transfer function yields evidence if the system

is passive or not. A necessary and sufficient conditions for a square system to be

passive is that the transfer function is positive real. This means that

• H(s) is analytic for Re(s)> 0;

• H(s̄) = H(s), for all s ∈ C;

• the Hermitian part of H(s) is symmetric positive , i. e.: HH(s)+H(s)≥ 0, for all s

with Re(s)> 0 [50]. Here H means the transposed conjugate complex: AH = ĀT .

The second condition is satisfied for real systems and the third condition implies the

existence of a rational function with a stable inverse. Any congruence transforma-

tion applied to the system matrices satisfies the previous conditions if the original

system satisfies them, and so preserves passivity of the system if the following con-

ditions are true:

• The system matrices are positive definite, E, A≥ 0.

• B = CT , D = 0.

These conditions are sufficient, but not necessary. They are usually satisfied in the

case of electrical circuits, which makes congruence-based projection methods very

popular in circuit simulation.

9 For a matrix pair (A,B) λ is a generalized eigenvalue with a generalized eigenvector v, if Av =
λBv.
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Structure preservation

For the case of having a circuit made up of linear elements only we have seen

in (3.3b) that the system matrices exhibit a block structured form. Furthermore we

recognized that the system matrices are sparse. In fact, the same properties hold for

the linear case (3.3a) also.

As a consequence, the matrices of the form (ξ E+A) that have to be decomposed

during the different modes of analysis exhibit already a form that can be exploited

when solving the corresponding linear systems.

If the full system (3.4) is replaced by a small dimensional system , it would be

most desirable if that ersatz system again has a structure similar to the structure

of the full problem. Namely, a block structure should be preserved and the system

matrix arising from the reduced order model should be sparse as well, as it can be

more expensive to decompose a small dense matrix then a larger sparse one.

Realizability

Preserving the block structure, as just mentioned, is crucial for realizing a re-

duced order model again as an RLC-circuit again. Another prerequisit for a reduced

order model to be synthesizable is reciprocity10. This is a special form of symme-

try of the transfer function H. We will not give details here but refer to [43] for a

precise definition and MOR techniques and to [7] for other reciprocity preserving

MOR techniques.

There is an ongoing discussion if it is necessary to execute this realization (also

referred to as un-stamping). It is worthwile mentioning two benefits of that

• An industrial circuit simulator does in fact never create the MNA equations. Ac-

tually, a circuit is given in the form of a netlist, i.e., a table where each line

correspond to one element. Each time a system has to be solved, the simulator

runs through that list, evaluates each element and stamps the corresponding value

in the correct places of the system matrix and the corresponding right-hand side.

If a reduced order model is available in the form of such a table as well, the sim-

ulator can treat that ersatz model like any other subcircuit and does not have to

change to a different mode of including the contribution of the subsystem to the

overall system.

• A synthezised reduced order model can provide more insight to the engineers

and designers than the reduced oreder model in mathematical form [49].

10 A two-terminal element is said to be reciprocal, if a variation of the values of one terminal

immediately has the reverse effect on the other terminal’s value. Linear characteristics obviously

have this property.
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3.1.3 MOR Methods

We recall the idea of model order reduction (MOR):

Replace a high dimensional problem, say of order n by one of reduced order

r≪ n such that the two input-output systems produce a similar output when excited

with the same input. Furthermore the reduced order problem should conserve the

characteristics of the full model it was derived from.

In fact there is a need for MOR techniques in various fields of applications and

for different kind of problem structures. Although a lot of effort is being spent on

deriving reliable MOR methods for, e.g., nonlinear problems of the form (3.5) and

for linear time varying (LTV) problems – these are problems of the form (3.4) where

the system matrices E,A, . . . depend on time t – MOR approaches for linear time

systems, or, more precisely, for linear time invariant (LTI) systems, are best under-

stood and are technically mature.

The outcome of MOR applied to the linear state space problem (3.4) is an ersatz

system of the form

0 = Êż(t)+ Âz(t)+ B̂u(t), (3.10a)

ỹ(t) = Ĉz(t)+ D̂u(t), (3.10b)

with state variable z(t) ∈ R
r, output ỹ(t) ∈ R

p and system matrices Ê, Â ∈ R
r×r,

B̂ ∈ R
r×m, Ĉ ∈ R

p×r and D̂ ∈ R
p×m. The order r of this system is much smaller

than the order n of the original system (3.4).

There are many ways to derive such a reduced order model and there are several

possibilities for classifying these approaches. It is beyond the scope of this introduc-

tory chapter to give a detailed description of all the techniques – for this we refer

to [3] and to the textbooks [1, 6, 51] and the papers cited therein.

We classify MOR approaches in projection and truncation based techniques. For

each of the two classes we reflect two methods that can be seen as the basis for

current developments. Note, that actually it is not possible to draw a sharp line. In

fact all MOR techniques aim at keeping major information and removing the less

important one. It is in how they measurure importance that the methods differ. In

fact several current developments can be regarded as a hybridization of different

techniques.

3.1.4 Projection based MOR

The concept of all projection based MOR techniques is to approximate the high

dimensional state space vector x(t) ∈ R
n with the help of a vector z(t) ∈ R

r of

reduced dimension r≪ n, within the meaning of
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x(t)≈ x̃(t) := Vz(t) with V ∈ R
n×r.

Note that the first approximation may be interpretet as a wish. We will only aim for

y(t)≈ ỹ(t) =CVz(t)+D̂u(t). The columns of the matrix V are a basis of a subspace

M̃ ⊆ R
n, i. e., the state space M , the solution x(t) of the network equation (3.4a)

resides in, is projected on M̃ . A reduced order model, representing the full problem

(3.4) results from deriving a state space equation that determines the reduced state

vector z(t) such that x̃(t) is a reasonable approximation to x(t).

If we insert x̃(t) on the right-hand side of the dynamic part of the input-output

problem (3.4a), it will not vanish identically. Instead we get a residual:

r(t) := EVż(t)+AVz(t)+Bu(t) ∈ R
n.

We can not demand r(t) ≡ 0 in general as this would state an overdetermined

system for z(t). Instead we apply the Petrov-Galerkin technique, i. e., we demand

the residual to be orthogonal to some testspace W . Assuming that the columns of a

matrix W ∈R
n×r span this testspace, the mathematical formulation of this orthogo-

nality becomes

0 = WT r(t) = WT (EVż(t)+AVz(t)+Bu(t)) ∈ R
r,

which states a differential equation for the reduced state z(t).
Defining

Ê := WT EV ∈ R
r×r, Â := WT AV ∈ R

r×r,

B̂ := WT B ∈ R
r×m, Ĉ := CV ∈ R

p×r,

D̂ := D ∈ R
p×m,

(3.11)

we arrive at the reduced order model (3.10).

To relate V and W we demand biorthogonality of the spaces V and W spanned

by the columns of the two matrices, respectively, i. e. WT V = Ir. With this, the

reduced problem (3.10) is the projection of the full problem (3.4) onto V along W .

If an orthonormal V and W = V is chosen, we speak of a orthogonal projection on

the space V (and we come down to a Galerkin method).

Now, MOR projection methods are characterised by the way of how to construct

the matrices V and W that define the projection. In the following we find a short

introduction of Krylov methods and POD approaches. The former starts from the

frequency domain representation, the latter from the time domain formulation of

the input-output problem.

3.1.4.1 Krylov method

Krylov-based methods to MOR are based on a series expansion of the transfer

function H. The idea is to construct a reduced order model such that the series
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expansions of the transfer function Ĥ of the reduced model and the full problem’s

transfer function agree up to a certain index of summation.

In the following we will assume that the system under consideration does not

have a direct feedthrough, i. e., (3.6a) is satisfied. Furthermore we restrict to SISO

systems, i. e, single input single output systems. In this case we have p = m = 1,

i. e., B = b and C = cH where b,c ∈R
n, and the (scalar) transfer function becomes:

H(s) =−cH (sE+A)−1
b ∈ C,

As {E,A} is a regular matrix pencil we find some frequency s0 such that s0E+A

is regular. Then the transfer function can be reformulated as

H(s) = l(In− (s− s0)F)
−1

r, (3.12)

with l :=−cH , r :=−(s0E+A)−1b and F := (s0E+A)−1A.

In a neighbourhood of s0 one can replace the matrix inverse in (3.12) by the

corresponding Neumann series. Hence, a series expansion of the transfer function is

H(s) =
∞

∑
k=0

mk(s− s0)
k with mk := lFk r ∈ C. (3.13)

The quantities mk for k = 0,1, . . . are called moments of the transfer function.

A different model, of lower dimension, can now be considered to be an approxi-

mation to the full problem, if the moments m̂k of the new model’s transfer function

Ĥ(s) agree with the moments mk defined above, for k = 1, . . . ,q for some q ∈ N.

AWE [37], the Asymptotic Waveform Evaluation, was the first MOR method that

was based on this idea. However, the explicit computation of the moments mk, which

is the key to AWE, is numerically unstable. This method can, thus, only be used for

small numbers q of moments to be matched.

Expressions like Fk r or lFk arise also in methods, namely in Krylov-subspace-

methods, which are used for the iterative solution of large algebraic equations. Here

the Lanczos- and the Arnoldi-method are algorithms that compute biorthogonal

bases W,V or a orthonormal basis V of the µth left and/or right Krylov subspaces

Kl(F
T , lT ,µ) := span

(
lT ,FT lT , . . . ,

(
FT

)µ−1
lT
)
,

Kr(F,r,µ) := span
(
r,Fr, . . . ,Fµ−1 r

)
,

for µ ∈ N, respectively in a numerically robust way.

The Krylov subspaces, thus ”contain” the moments mk of the transfer function

and it can be shown, e. g., [2, 13], that from applying Krylov-subspace methods,

reduced order models can be created. These reduced order models, however, did not

arise from a projection approach. In fact, the Lanczos- and the Arnold-algorithm

produces besides the matrices W and/or V whose columns span the Krylov sub-

spaces Kl and/or Kr, respectively, a tridiagonal or an upper Hessenbergmatrix T ,
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respectively. This matrix is then used to postulate a dynamical system whose trans-

fer function has the desired matching property.

Concerning the moment matching property there is a difference for reduced order

models created from a Lanczos- and those created from an Arnoldi-based process.

For a fixed q, the Lanczos-process constructs the qth left and the qth right Krylov-

subspace, hence biorthogonal matrices W,V ∈ R
n×q. A reduced order model of

order q, arising from this procedure possesses a transfer function Ĥ(s) whose first

2q moments coincide with the first 2q moments of the original problem’s transfer

function H(s), i. e. m̂k = mk for k = 0, . . . ,2q−1. Hence, the Lanczos MOR model

yields a Padé approximation.

The Arnoldi method on the other hand is a one sided Krylov subspace method.

For a fixed q only the qth right Krylov subspace is constructed. As a consequence,

here only the first q moments of the original system’s and the reduced system’s

transfer function match.

Owing to their robustness and low computational cost, Krylov subspace algo-

rithms proved suitable for the reduction of large-scale systems, and gained consid-

erable popularity, especially in electrical engineering. A number of Krylov-based

MOR algorithms have been developed, including techniques based on the Lanczos

method [9, 18] and the Arnoldi algorithm [35, 55]. Note that the moment match-

ing, mentioned above, can only be valid locally, i. .e, for a certain frequency range

around the expansion point s0. However, also Krylov MOR schemes based on a

multipoint expansion in the frequency range have been constructed [20].

The main drawbacks of these methods are, in general, lack of provable error

bounds for the extracted reduced models, and no guarantee for preserving stabil-

ity and passivity. There are techniques to turn reduced systems to passive reduced

systems. However, this introduced some post-processing of the model [12].

Passivity Preservation

Odabasioglu et al. [35] turned the Krylov based MOR schemes into a real pro-

jection method. In addition, the developed scheme, PRIMA (Passive Reduced-Order

Interconnect Macromodeling Algorithm), is able to preserve passivity.

This MOR technique can be applied to electrical circuits that contain only passive

linear resistors, capacitors and inductors and which accepts only currents as input at

the terminals. One says that the RLC-circuit is in impedance form, i. e., the inputs

u(t) are currents and the outputs y are voltages.

In this case, the system matrices E,A,B and C have a special structure (cp.

(3.3b)), namely:

E =

(
E1 0

0 E2

)
, A =

(
A1 A2

−AT
2 0

)
, B = CT =

(
B1

0

)
, (3.14)

where E1,A1 ∈ R
ne×ne and E2 ∈ R

nL×nL and are symmetric non-negative definit

matrices.
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In PRIMA, first the Arnoldi method is applied to create the projection matrix V.

Then, choosing W = V, the system matrices are reduced according to (3.11). For

several implementational details, covering Block-Arnoldi as well as deflation, see

[54]. The reduced order model arising in this way can be shown to be passive [35].

The key to these findings is the above special structure of linear RLC-circuits in

(3.14).

It is, however, not necessary, to use the Arnoldi method to construct the matrix

V. Furthermore, it is also possible to apply the technique to systems in admittance

form, i. e., where the inputs are voltages and the outputs are currents. For more

details we refer to [26] in this book.

Structure Preservation

As we have seen PRIMA takes advantage of the special block structure (3.14) of

linear RLC circuits to create passive reduced order models. The structure, however,

is not preserved during the reduction. This makes it hard to synthesise the model,

i. e., realize the reduced model as an RLC circuit again.

Freund [13–17] developed a Krylov-based method where passivity, the structure

and reciprocity are preserved. SPRIM (Structure-Preserving Reduced-Order Inter-

connect Macromodell) is similar to PRIMA as first the Arnoldi-method is run to

create a matrix V ∈ R
n×r. This, however, is not taken as the projection matrix di-

rectly. Instead, the matrix V is partitioned to

V =

(
V1

V2

)
with V1 ∈ R

ne×r,V2 ∈ R
nL×r,

corresponding to the block structure of the system matrices E,A,B,C.

Finally, after re-orthogonalization, the blocks V1,V2 are rearranged to the matrix

V̂ =

(
V1 0

0 V2

)
∈ R

n×(2r), (3.15)

which is then used to transform the system to a reduced order model, according to

the transformations given in (3.11) (with V = W = V̂).

It can be shown, that the SPRIM-model preserves twice as many moments as the

PRIMA, if the same Arnoldi-method is applied. Note, however, that the dimension

also increases by a factor 2.

Multi-Input Multi-Output

For the general case, where p and m are larger than one, i. e., when we have

multiple inputs and multiple outputs, the procedure carried out by the Krylov MOR

methods is in principle the same. In this case however, Krylov subspaces for multi-



20 Chapter 3 Authorgroup

ple starting vectors have to be computed and one has to take care, when a ”break-

down” or a ”near-breakdown” occurs, that is, when the basis vectors constructed

for differing starting vectors, r1 and r2 become linearly dependent. In this case the

progress for the Krylov subspace becoming linear dependent has to be stopped. The

Krylov subspace methods arising from that considerations are called Block Krylov

methods. For a detailed discussion we refer to the literature given above.

3.1.4.2 POD method

While the Krylov approaches are based on the matrices, i. e., on the system itself,

the method of Proper Orthogonal Decomposition (POD) is based on the trajectory

x(t), i. e., the outcome of the system (3.4). One could also say that the Krylov

methods are based on the frequency domain, whereas POD is based on the time

domain formulation of the input output system to be modelled.

POD first collects data {x1, . . . ,xK}. The datapoints are snapshots of the state

space solution x(t) of the network equation (3.4a) at different timepoints t or for

different input signals u(t). They are usually constructed by a numerical time simu-

lation, but may also arise from measurements of a real physical system.

From analysing this data, a subspace is created such that the data points as a

whole are approximated by corresponding points in the subspace in a optimal least-

squares sense. The basis of this approach is also known as Principal Component

Analysis and Karhunen–Loève Theorem from picture and data analysis.

The mathematical formulation of POD [38] is as follows: Given a set of K dat-

apoints X := {x1, . . . ,xK} a subspace Sr ⊂ R
n of dimension r is searched for that

minimizes

‖X−ρrX‖2
2 :=

1

K

K

∑
k=1

‖xk−ρrxk‖2
2, (3.16)

where ρr : Rn →Sr is the orthogonal projection onto Sr.

We will not describe POD in full detail here, as in literature, e. g., [1, 38], this is

well explained. However, the key to solving this minimization problem is the com-

putation of the eigenvalues λi and eigenvectors ϕi (for i = 1, . . . ,n) of the correlation

matrix XXT :

XXT ϕ i = λiϕ i,

where the eigenvalues and eigenvectors are sorted such that λ1 ≥ ·· · ≥ λn. The

matrix X is defined as X := (x1, . . . ,xK) ∈ R
n×K and is called snapshot matrix.

Intuitively the correlation matrix detects the principal directions in the data cloud

that is made up of the snapshots x1, . . . ,xK . The eigenvectors and eigenvalues can

be thought of as directions and radii of axes of an ellipsoid that incloses the cloud

of data. Then, the smaller the radii of one axis is, the less information is lost if that

direction is neglected.
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The question arises, how many directions r should be kept and how many can be

neglected. There is no a-priori error bound for the POD reduction (Rathinam and

Petzold [42], though, perform a precise analysis of the POD accuracy). However,

the eigenvalues are a measure for the relevance of the dimensions of the state space.

Hence, it seems reasonable to choose the dimension r of the reduced order model in

such a way, that the relative information content of the reduced model with respect

to the full system is high. The measure for this content, used in the literature cited

above is

I (r) =
λ1 + · · ·λr

λ1 + · · ·λr +λr+1 + · · ·λn

.

Clearly, a high relative information content means to have I (r)≈ 1. Typically r is

chosen such that this measure is around 0.99 or 0.995.

If the eigenvalues and eigenvectors are available and a dimension r has been

chosen, the projection matrices V and W in (3.11) are taken as

V := W := (ϕ1, . . . ,ϕr) ∈ R
n×r.

leading to an orthogonal projection ρr =VVT on the space Sr spanned by ϕ1, . . . ,ϕr.

The procedure described so far relies on the eigenvalue decomposition of the

n× n matrix XXT . This direct approach is feasible only for problems of moderate

size. For high dimensional problems, i. e., for dimensions n ≫ 1, the eigenvalues

and eigenvectors are derived form the Singular Value Decomposition (SVD) of the

snapshot matrix X ∈ R
n×K .

The SVD provides three matrices:

Φ = (ϕ1, · · · ,ϕn) ∈ R
n×n orthogonal,

Ψ = (ψ1, · · · ,ψK) ∈ R
K×K orthogonal,

Σ = diag(σ1, . . . ,σν) ∈ R
ν×ν with σ1 ≥ ·· · ≥ σν > σν+1 = . . .= σK = 0,

such that

X = Φ

(
Σ 0

0 0

)
Ψ T , (3.17)

where the columns of Φ and Ψ are the left and right singular eigenvectors, respec-

tively, and σ1, . . . ,σν are the singular values of X (σν being the smallest non-zero

singular value; this also defines the index ν). It follows that ϕ1, . . . ,ϕn are eigenvec-

tors of the correlation matrix XXT with the n eigenvalues σ2
1 , . . . ,σ

2
ν ,0, . . . ,0.

3.1.5 Truncation based MOR

The MOR approaches we reviewed so far rely on the approximation of the high-

dimensional state space, the solution of (3.4) resides in, by an appropriate space
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of lower dimension. An equation for the correspondent z(t) of x(t) is derived by

constructing a projection onto that lower-dimensional space.

Although the approaches we are about to describe in the following can also be

considered as projection methods in a certain sense, we decided to present them

separately. What makes them different, is that these techniques base on preserving

key characteristics of the sytem rather than reproducing the solution. We will get

aquainted with an ansatz based upon energy considerations and an approach meant

to preserve poles and zeros of the transfer function.

3.1.5.1 Balanced Truncation

The technique of Balanced Truncation, introduced by Moore [34], is based on

control theory, where one essentially investigates how a system can be steered and

how its reaction can be observed. In this regard, the basic idea of Balanced Trunca-

tion is to first classify, which states x are hard to reach and which states x are hard

to deduce from observing the output y, then to reformulate the system such that

the two sets of states coincide and finally truncate the system such that the reduced

system does not attach importance to these problematic cases.

The system (3.4) can be driven to the state x̄ in time T if an input ū(t), with

t ∈ [0,T ] can be defined such that the solution at time T , i. e., x(T ) takes the value

x̄ where x(0) = 0. We perceive the L2-norm ‖ · ‖2, with ‖ū‖2
2 =

∫ T
0 ū(t)T ū(t) dt as

energy of the input signal. If the system is in state x̃ at time t = 0 and no input is

applied at its ports we can observe the output ỹ(t) for t ∈ [0,T ] and the energy ‖ỹ‖2

emitted at the system’s output ports.

We consider a state as hard to reach if the minimal engergy needed to steer the

system to that state is large. Similarly, a state whose output energy is small leaves a

weak mark and is therefore considered to be hard to be observed.

The minimal input energy needed and the maximal energy emitted can be calcu-

lated via the finite and the infinite controllability Gramian

P(T ) =
∫ T

0
eAtBBT eAT tdt and P =

∫ ∞

0
eAtBBT eAT tdt (3.18a)

and the finite and infinite observability Gramian

Q(T ) =
∫ T

0
eAT tCT CeAtdt and Q =

∫ ∞

0
eAT tCT CeAtdt, (3.18b)

respectively. Note that the system (3.4) is assumed to be stable. Furthermore, the

above definition is valid for the case E = In×n. The latter does not mean a limitation

of the method of Balanced Truncation to standard state space systems. In fact, these

considerations can be applied to descriptor systems as well, e. g., [53]

With the above definitions one can prove that the minimal energy needed, i. e.,

the energy connected to the most economical input ū, to reach the state x̄ holds
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‖ū‖2
2 = x̄T

P
−1x̄.

Similarly, the energy emitted due to the state x̃ holds

‖ỹ‖2
2 = x̃Qx̃.

The Gramians are positive definite. Applying a diagonalization of the controlla-

bility Gramian, it is easy to see that states that have a large component in the direc-

tion of eigenvectors corresponding to small eigenvalues of P are hard to reach. In

the same way it is easy to see that states pointing in the direction of eigenvectors to

small eigenvalues of the observability Gramian Q are hard to observe.

The basic idea of the Balanced Truncation MOR approach is to neglect states that

are both hard to reach and hard to observe. This marks the truncation part. However,

to reach this synchrony of a state being both hard to reach and hard to observe,

the basis of the state space has to be transformed. This marks the balancing part.

Generally, a basis transformation introduces new coordinates x̃ such that x = T−1x̃

where T is the matrix representation of the basis transformation. Here the Gramians

transform equivalently to

P̃ = TPTT and Q̃ = T−1
QT−T .

The transformation T is called balancing transformation and the system arising

from applying the transformation to the system (3.4) is called balanced if the trans-

formed Gramians satisfy

P̃ = Q̃ = diag(σ1, . . . ,σn). (3.19)

The values σ1, . . . ,σn are called Hankel Singular Values. They are the positive

square roots of the eigenvalues of the product of the Gramians:

σl =
√

λk(P ·Q), l = 1, . . . ,n.

Now we assume that the eigenvalues are sorted in descending order, i. e., σ1 ≥
σ2 ≥ ·· · ≥ σn. We introduce the cluster




σ1

. . .

σr

σr+1

. . .

σn




=

(
Σ1

Σ2

)
,

and adopt this to the tranformed input-output system11

11 To simplify matters we have chosen E = In×n = diag(1, . . . ,1) ∈ R
n×n and D = 0.
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0 =

(
˙̃x1(t)
˙̃x2(t)

)
+

(
Ã11 Ã12

Ã21 Ã22

)(
x̃1(t)
x̃2(t)

)
+

(
B̃1

B̃2

)
u(t),

y(t) = (C1,C2)

(
x̃1(t)
x̃2(t)

)
,

(3.20)

such that x̃1 ∈ R
r and x̃2 ∈ R

n−r.

Finally we separate the cluster and derive the reduced order model

0 = ˙̂x11(t)+ Ã1x̂1(t)+ B̃1u(t), (3.21a)

ỹ1(t) = C̃1x̂1(t) (3.21b)

of dimension r ≪ n, by skipping the part corresponding to the small eigenvalues

σr+1, . . . ,σn of both Gramians.

Important Properties

Balanced Truncation is an appealing MOR technique because it automatically

preserves stability.

Furthermore, and even more attractive is that this MOR approach provides a com-

putable error bound: Let σr+1, . . . ,σk be the different eigenvalues that are truncated.

Then, for the transfer function H1 corresponding to (3.21), it holds

‖H−H1‖H∞
≤ 2(σr+1 + · · ·+σk) , (3.22)

where the H∞ norm is defined as ‖H‖H∞
:= supω∈R ‖H(iω)‖2 where ‖ · ‖2 is the

matrix spectral norm.

Computation

Applying the method of Balanced Truncation as presented above makes it neces-

sary to compute the Gramians and the simultaneous diagonalization of the Grami-

ans.

The infinite Gramians P and Q are defined by infinity integrals. However, it is

not hard to show that they arise from solving the Lyapunov equations:

AP +PAT +BBT = 0

AT
Q+QA+CT C = 0

(3.23)

Having solved the Lyapunov equations, one way to determine the balancing trans-

formation is described by the square root algorithm (see e. g. [1]). The basic steps

in this approach are the computation of the Cholesky factorisations of the Gramians

P = ST S and Q = RT R and the singular value decomposition of the product SRT .
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In the past Balanced Bruncation was not favored because the computation of

the solution of the high dimensional matrix equations (3.23) and the balancing was

very cumbersome and costly. In recent years however, progress was made in the

development of techniques to overcome these difficulties. Techniques that can be

applied to realize the Balanced Truncation include the ADI method [29], the sign

function method [4] or other techniques, e. g. [48]. For a collection of techniques

we also refer to [5].

Poor Man’s TBR

Another method that should be mentioned is Poor Man’s TBR12, introduced by

Phillips and Silveira [36]. Balanced Truncation relies on the Gramians. The methods

we mentioned so far compute these Gramians based on the Lyapunov equations

(3.23).

The idea of Poor Man’s TBR (PMTBR) however, is to compute the Gramians

from their definition (3.18). If the system to be reduced is symmetric, i. e. A = AT

and C = BT , P and Q coincide. The (controllability and observability) Gramian is

then defined as

P =
∫ ∞

0
eAtBBT eAT tdt.

As the Laplace transform of eAt is (sI−A)−1, we can apply Parseval’s lemma,

which says that a signal’s energy in the time domain is equal to its energy in the

frequency domain and transfer the time domain integral to the frequency domain:

P =
∫ ∞

−∞
(iωI−A)−1BBT (iωI−A)−Hdω.

PMTBR now starts with applying a numerical quadrature scheme: With nodes

ωk, weights wk and defining zk =(iωkI−A)−1B an approximation P̂ to the gramian

P can be computed as:

P ≈ P̂ = ∑
k

wk zk zH
k = ZW · (ZW )H ,

where Z = (z1,z2, . . .) and W = diag(
√

w1,
√

w2, . . .).
For further details on the order reduction we refer to the original paper mentioned

above.

12 TBR=Truncated Balanced Realization
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3.1.5.2 Modal Truncation

Engineers usually investigate the transfer behavior of an input-output system by

inspecting its frequency response H(iω) =: G(ω) for frequencies ω ∈ R
+. The

Bode plot, i. e. the combination of the Bode magnitude and phase plot, expressing

how much a signal component with a specific frequency is amplified or attenuated

and which phase shift can be observed from in- to output, respectively, is a graphical

representation of the frequency response.

One is especially interested in the peaks and sinks of the Bode magnitude plot,

which are caused by the poles and zeros of the transfer function H. The Modal

Truncation [44] is aimed at constructing a reduced order model (3.10) such that

peaks and sinks of the reduced order model’s frequency response Ĝ(ω) = Ĥ(iω)
match with the one of the full dynamical problem (3.4).

Applying Cramer’s rule it is obvious that the transfer function is a rational func-

tion:

H(s) =
pn−1(s)

qn(s)
,

with polynomials pn−1 and qn of degree n− 1 and n respectively. The zeros of the

numerator are the zeros of the transfer function and the zeros of the denominator are

its poles.

The generalized eigenvalues of the matrix pencil {E,A}, or the eigenvalues of A,

if we assume E = In×n, are the key to the poles of the transfer function. For a more

detailed discussion we refer to [27]. To illustrate this relation we restrict to the latter

case and consider a SISO system without direct feedtrough, i. e., D = 0.

The eigentriples (λi,vi,wi) for i = 1, . . . ,n of A consist of the ith eigenvalue

λi ∈ C and the ith right and left eigenvalue vi,wi ∈ C
n, respectively, that satisfy

Avi = λiv and wH
i A = λiw

H .

From assuming that A is diagonalizable it can be derived that

LHAR = Λ ,

where Λ = (λ1, . . . ,λn), R = (v1, . . . ,vn) and L = (w1, . . . ,wn) ∈ C
n×n, where the

left and right eigenvectors are scaled such that LHR = In×n.

We apply a change of coordinates x=Rx̃ and multiply the input to state mapping

(3.4a) with LH which is a projection on the space spanned by the columns of R along

the space spanned by the columns of L. This transforms the input-output system

(3.4) to

d

dt
x̃ = Λ x̃+LHbu,

y = cHRx̃.
(3.24)
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The transformed system is equivalent to the original system (3.4), the (scalar) trans-

fer function can be represented as

H(s) =
n

∑
i=1

ri

s−λi

with ri =
(
cHvi

)(
wH

i b
)
∈ C for i = 1, . . . ,n. (3.25)

This form of displaying the transfer function is known as Pole-Residue Representa-

tion, where the quantities ri ∈ C are called residues and where we can see that the

eigenvalues of the matrix A are the poles of H(s).
The idea of modal truncation is to replace the full order problem with a reduced

order model of say order r < n whose transfer function has a pole-residue represen-

tation that is a truncation of the corresponding full model’s representation (3.25),

i. e.

Ĥ(s) =
r

∑
i=1

ri

s−λi

, (3.26)

where ri and λi for i = 1, . . . ,r are the same as in (3.25). The corresponding state-

space representation (3.10) evolves from carrying out the matrix projections defined

in (3.11) where V,W ∈ C
n×r comprises r right and left eigenvectors v1, . . . ,vr and

w1, . . . ,wr, respectively. As no new poles arise by constructing the reduced order

model in this way, the stability property is inherited from the full order problem.

Immediately the question arises, which pairs (λi,ri) of poles and residues and

how many should be taken into account.

Rommes [44] and Martins et al. [30] sort these pairs according to decreasing

dominance of the pole. Their measure for dominance of a pole is the magnitude of

the relation
|ri|

|re(λi)|
.

Hence, modal truncation takes into account the first r poles/residues according to

this ordering scheme. The answer to the second part of the question, i. e., how many

poles/residues to keep, arises from the error bound [19]

‖H− Ĥ‖H∞
≤

n

∑
j=r+1

|ri|
|re(λi)|

, (3.27)

and hence from the deviation one is willing to tolerate.

The computation of the error bound (3.27) necessitates a full eigenvalue decom-

position. This is only feasible for moderate orders n≤ 2000. For large scale systems

methods using only a partial eigenvalue decomposition can be applied. Here the

Subspace Accelerated Dominant Pole Algorithm (SADPA), introduced by Rommes

and Martins [45] produces a series of dominant poles. The main principle of SADPA

is to search for the zeros of 1
H(s) using a Newton-iteration. As the Newton-iteration

can only find one zero sufficiently close to a starting value at a time, the iteration

procedure has to be applied several times. In order to find less dominant poles at

each time, the system the dominant pole algorithm is applied to is adjusted each
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time one dominant pole has been found. This adjustment is referred to as subspace

acceleration.

Again, for further details we refer to the papers cited above.

3.1.6 Other approaches

We shortly address some other approaches. In [25,39,40], port-Hamiltonian sys-

tems are considered to guarantee structure preserving reduced models. In [8,10,11],

vector fitting techniques are used to obtain passivity preserving reduced models.

In [24, 31, 46], one matches additional moments of Laurent expansions involving

terms with 1/s. These are applied to obtain passive reduced models for RLC cir-

cuits.

3.1.7 Examples

In this part we will introduce linear circuits and reduce them with techniques

which have already been discussed. We give results for the methods PRIMA [35],

SPRIM [13–17], and PMTBR [36].

In simulation a Bode magnitude plot of the transfer function shows the magnitude

of H(iω), in decibel, for a number of frequencies ω in the frequency domain of

interest. If the transfer function of the original system can be evaluated at enough

points s = iω to produce an accurate Bode plot, the original frequency response can

be compared with the frequency response of the reduced model. In our examples, H

is a scalar.

3.1.7.1 Example 1

We choose an RLC ladder network [33] shown in Figure 3.1. We set all the

capacitances and inductances to the same value 1 while R1 = 1
2

and R2 = 1
5
, see

[32, 52]. We arrange 201 nodes which gives us the order 401 for the mathematical

model of the circuit.

If we write the standard MNA formulation the linear dynamical system is de-

rived. The system matrices are as follows (for K = 3, for example):

E = I, A =




−2 0 0 −1 0

0 0 0 −1 1

0 0 −5 0 1

1 1 0 0 0

0 −1 −1 0 0



, B =




0

0

5

0

0



,

C =
[

0 0 −5 0 0
]
, D = 5. (3.28)
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Fig. 3.1 RLC Circuit of order n = 2K−1, example 1.

In the state variable x, xk is the voltage across capacitance Ck (k = 1, . . . ,K), or

the current through inductor Lk−K (k = K + 1, . . . ,2K− 1). In general the number

of nodes K is odd. The voltage u and the current y are input and output, respec-

tively. Note that when the number of nodes is K the order of the system becomes

n = 2K−1. In this test case we have an ODE instead of a DAE as E = I, see (3.28).

The original transfer function is shown in Figure 3.2. The plot already illustrates

how difficult it is to reduce this transfer function as many oscillations appear.
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Fig. 3.2 Original transfer function for the first example of Fig. 3.1, order n = 401. The frequency

domain parameter ω varies between 10−2 to 103.

3.1.7.2 Example 2

Next, we use another RLC ladder network, given in Figure 3.3 [33, 47], for the

second example. The major difference to the previous example is that we introduced

a resistor (all of equal value) in parallel to the capacitors at each node connected to
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Fig. 3.3 RLC Circuit of order n = 2K−1, example 2.

the ground. We set all the capacitances and inductances to the same value 1 while

R1 =
1
2
, R2 =

1
5

and R = 1. We choose 201 nodes which results in a system having

order 401 for the mathematical model of the circuit. Like the previous example we

again derive a system of ODEs. The original transfer function of the second example

is shown in Figure 3.4.
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Fig. 3.4 Original transfer function for the second example of Fig. 3.3, order n = 401. The fre-

quency domain parameter ω varies between 10−2 to 103.

3.1.7.3 MOR by PRIMA, SPRIM and PMTBR

The main reason for choosing these two examples is the behavior of the Hankel

singular values, see Figure 3.5. The Hankel singular values for the first example do

not show any significant decay, while in the second example we observe a rapid

decay in the values. The results are taken from [33].

The Figures 3.6 and 3.7 show the absolute error between the transfer function of

the full system and the transfer function of several reduced systems. The model is

reduced by three linear techniques (PRIMA, SPRIM and PMTBR) for both exam-

ples.
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Fig. 3.5 Hankel Singular Values for Example 1 and 2, (semi-logarithmic scale).
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Fig. 3.6 Error plot, the frequency domain parameter ω varies between 10−2 to 103, Example 1.

In the example 1 we reduced the system from order n = 401 (number of nodes is

K = 201) to order 34, which means that we reduced the system (in all three methods)

by a factor of 10. The order of the reduced model is relatively large in this case as the

dynamical system is somehow stubborn for any reductions, see Figure 3.5. The price

we will pay for a smaller system is too high as we loose a lot of information during

the reduction and the error is becoming relatively large. As we expected, PRIMA

and SPRIM in Figure 3.6 produced reliable results close to the expansion point, in

this case s = 0, but the error is immediately increasing for the rest of the oscillation

part, see Figure 3.2, and then smoothly decreases for higher frequencies. In the first

example the PMTBR method matches a bit worse for the low frequencies as the

error decreases just for a short interval and immediately starts to increase again. But

PMTBR also cannot cover the oscillation part of the transfer function although it

resolves the higher frequencies well. The order in PMTBR results from a prescribed

tolerance.
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Fig. 3.7 Error plot, the frequency domain parameter ω varies between 10−2 to 103, Example 2.

For the second example the SPRIM and PRIMA produced a nice match around

the expansion point, s = 0, like the first example, but for a larger interval, see Fig-

ure 3.7. The peaks of error for both PRIMA and SPRIM are around −50 and −80

dB, respectively, which are much lower than in example 1 where the peaks are

around 0 dB for both PRIMA and SPRIM. We allowed PMTBR to reduce the sys-

tem by a factor of 20 in this case although we keep the order of the reduced system

the same as for the first example for the PRIMA and SPRIM. Despite the lower di-

mension for the reduced system PMTBR produced much better results for this test

case compared to the first example as the error starts from −50 dB and smoothly

decreases for low frequencies and suddenly falls to −300 dB for larger frequencies.

As we expected, the SPRIM produces a better approximation than PRIMA, espe-

cially for the second example, since it matches twice as much moments. Although

both methods have a good agreement around the expansion point s = 0, the error

increases as we are far from the expansion point. Since the Hankel singular values

for the first example do not decay, the PMTBR method cannot produce an accurate

model for low frequencies in that case. In the second example where the Hankel

singular values rapidly decay PMTBR produced a more reliable result with a better

match. This shows that we cannot stick to one method for reduction in general and

the method should be chosen depending on the circuit’s behavior.

3.1.8 Summary

In industrial applications of different disciplines, model order reduction is gain-

ing more and more interest. As there is not the one and only type of model to de-

scribe all kinds of dynamics of different physical problems there is not and will

never be the one and only MOR technique that fits best to all problems. Hence,

research on MOR techniques is an ongoing process.
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In the following contributions in this chapter you will find different approaches to

different questions, aiming to attack different facets of reduced order models. This

introductory contribution was ment to give an overview of the basic ideas and the

motivation of some MOR techniques that are applied and refined throughout this

chapter.
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3.2 Eigenvalue methods and model order reduction

13Physical structures and processes are modeled by dynamical systems in a wide

range of application areas. The increasing demand for complex components and

large structures, together with an increasing demand for detail and accuracy, makes

the models larger and more complicated. To be able to simulate these large-scale

systems, there is need for reduced-order models of much smaller size, that approxi-

mate the behavior of the original model and preserve the important characteristics.

In order to preserve the important characteristics, one usually first has to know

what are the important characteristics. For linear dynamical systems, two important

characteristics are the dominant dynamics and stability. The dominant dynamics are

determined by the dominant modes of the system, while stability of the system is

determined by the location of the eigenvalues. Hence, both characteristics can be

computed by solving eigenvalue problems: the dominant dynamics can be found by

computing the dominant eigenvalues (poles) and corresponding eigenvectors, while

stability can be assessed by determining whether the system has no eigenvalues in

the right half-plane (the system is stable if there are no eigenvalues with real part

greater than zero).

A large-scale dynamical system can have a large number of modes. Like a gen-

eral square matrix can be approximated by its largest eigenvalues, i.e. by projecting

it onto the space spanned by the eigenvectors corresponding to the largest eigen-

values, a dynamical system can be approximated by its dominant modes: a reduced

order model, called the modal equivalent, can be obtained by projecting the state

space on the subspace spanned by the dominant eigenvectors. This technique, modal

approximation or modal model reduction, has been successfully applied to scalar

and multivariable transfer functions of large-scale power systems, with applications

such as stability analysis and controller design, see [80, 81].

The dominant eigenvectors, and the corresponding dominant poles of the sys-

tem transfer function, are specific eigenvectors and eigenvalues of the state matrix.

Because the systems are very large in practice, it is not feasible to compute all eigen-

vectors and to select the dominant ones.

Section 3.2 is concerned with the efficient computation of the dominant poles

and eigenvectors specifically, and their use in model order reduction. The Section

is organized as follows. In Sect. 3.2.1 the concept of dominant poles and modal

approximation is explained in more detail. Dominant poles can be computed with

specialized eigensolution methods, as is described in Sect. 3.2.2. Some generaliza-

tions of the presented algorithms are shown in Sect. 3.2.3. Ideas on how to improve

Krylov based MOR methods by using dominant poles are discussed in Sect. 3.2.4.

Numerical examples are presented in Sect. 3.2.5. Section 3.2.6 concludes.

13 Section 3.2 has been written by: Joost Rommes and Nelson Martins.



3 Model Order Reduction — Methods, Concepts and Properties 37

For general introductions to model order reduction we refer to the previous Sec-

tion 3.1 and to [57, 59, 60, 87]; for eigenvalue problems, see [86, 92]. More detailed

publications on the contents of this Section are [79–84]. The pseudocode algorithms

presented in this Section are written using Matlab-like [91] notation.

3.2.1 Transfer functions, dominant poles and modal equivalents

In Section 3.2, the dynamical systems (E,A,b,c,d) are of the form

{
Eẋ(t) = Ax(t)+bu(t)
y(t) = c∗x(t)+du(t),

(3.29)

where A,E ∈R
n×n, E may be singular, b,c,x(t) ∈R

n, u(t),y(t),d ∈R. The vectors

b and c are called the input, and output map, respectively. The transfer function

H : C→ C of (3.29) is defined as

H(s) = c∗(sE−A)−1b+d. (3.30)

The poles of the transfer function in (3.30) are a subset of the eigenvalues λi ∈C

of the matrix pencil (A,E). An eigentriplet (λi,xi,yi) is composed of an eigenvalue

λi of (A,E) and corresponding right and left eigenvectors xi,yi ∈ C
n:

Axi = λiExi, xi 6= 0,

y∗i A = λiy
∗
i E, yi 6= 0, (i = 1, . . . ,n).

The actual occuring poles in (3.30) are identified by the components of the eigenvec-

tors in in b and c. Assuming that the pencil is nondefective, the right and left eigen-

vectors corresponding to the same finite eigenvalue can be scaled so that y∗i Exi = 1.

Furthermore, it is well known that left and right eigenvectors corresponding to

distinct eigenvalues are E-orthogonal: y∗i Ex j = 0 for i 6= j. The transfer function

H(s) can be expressed as a sum of residues Ri ∈ C over the ñ ≤ n finite first order

poles [67]:

H(s) =
ñ

∑
i=1

Ri

s−λi

+R∞ +d, (3.31)

where the residues Ri are

Ri = (c∗xi)(y
∗
i b),

and R∞ is the constant contribution of the poles at infinity (often zero).

Although there are different indices of modal dominance [56,63,93], the follow-

ing will be used in this chapter.

Definition 3.1. A pole λi of H(s) with corresponding right and left eigenvectors xi

and yi (y∗i Exi = 1) is called the dominant pole if |Ri|/|Re(λi)|> |R j|/|Re(λ j)|, for

all j 6= i.
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More generally, a pole λi is called dominant if |Ri|/|Re(λi)| is not small com-

pared to |R j|/|Re(λ j)|, for all j 6= i. A dominant pole is well observable and control-

lable in the transfer function. This can also be seen in the corresponding Bode-plot,

which is a plot of the magnitude |H(iω)| against ω ∈ R: peaks occur at frequencies

ω close to the imaginary parts of the dominant poles of H(s). In practise one also

plots the corresponding phase of H(iω). An approximation of H(s) that consists of

k < n terms with |R j|/|Re(λ j)| above some value, determines the effective transfer

function behavior [89] and is also known as transfer function modal equivalent:

Definition 3.2. A transfer function modal equivalent Hk(s) is an approximation of a

transfer function H(s) that consists of k < n terms:

Hk(s) =
k

∑
j=1

R j

s−λ j

+d. (3.32)

A modal equivalent that consists of the most dominant terms determines the ef-

fective transfer function behavior [89]. If X ∈ C
n×k and Y ∈ C

n×k are matrices

having the left and right eigenvectors yi and xi of (A,E) as columns, such that

Y ∗AX = Λ = diag(λ1, . . . ,λk), with Y ∗EX = I, then the corresponding (complex)

reduced system follows by setting x = X x̃ and multiplying from the left by Y ∗:
{

˙̃x(t) = Λ x̃(t)+(Y ∗b)u(t)
ỹ(t) = (c∗X)x̃(t)+du(t).

In practice, it is advisable to make a real reduced model in the following way:

for every complex pole triplet (λ ,x,y), construct real bases for the right and left

eigenspace via [Re(x), Im(x)] and [Re(y), Im(y)], respectively. Let the columns of

Xr and Yr be such bases, respectively. Because the complex conjugate eigenvec-

tors are also in this space, the real bases for the eigenspaces are still (at most)

k dimensional. The real reduced model can be formed by using Xr and Yr in

(Y ∗r EXr,Y
∗
r AXr,Y

∗
r b,X∗r c,d).

For stable nondefective systems, the error in the modal equivalent can be quanti-

fied as [63]

‖H−Hk‖∞ = ‖
n

∑
j=k+1

R j

s−λ j

‖∞

≤
n

∑
j=k+1

|R j|
|Re(λ j)|

,

where ‖H‖∞ is the operator norm induced by the 2-norm in the frequency do-

main [57, 63]. An advantage of modal approximation is that the poles of the modal

equivalent are also poles of the original system.

The dominant poles are specific (complex) eigenvalues of the pencil (A,E) and

usually form a small subset of the spectrum of (A,E), so that rather accurate modal

equivalents may be possible for k ≪ n. Since the dominant poles can be located
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anywhere in the spectrum, specialized eigensolution methods are needed. Because

the dominance of a pole is independent of d, without loss of generality d = 0 in the

following.

3.2.2 Specialized eigensolution methods

In this section we describe the Dominant Pole Algorithm and its extension with

deflation and subspace acceleration.

3.2.2.1 The Dominant Pole Algorithm (DPA)

The poles of the transfer function (3.30) are the λ ∈C for which lims→λ |H(s)|=
∞ and can be computed via the roots of G(s) = 1/H(s). Applying Newton’s method

leads to the scheme

sk+1 = sk−
c∗vk

w∗kEvk

, (3.33)

where vk = (skE − A)−1b and wk = (skE − A)−∗c. The algorithm based on this

scheme, also known as the Dominant Pole Algorithm (DPA) [71], is shown in Al-

gorithm 3.1. Note that strictly speaking the definition of dominance used here is

based on |R j| (and not on |R j|/|Re(λ j)| as in Definition 3.1); observe that in (3.32)

R j = (c∗x j)(y
∗
jb). The subsequent algorithms offer refinements that may lead to ad-

ditional candidates, in any user-specified dominance criterion, including Definition

3.1.

Algorithm 3.1 The Dominant Pole Algorithm (DPA).

INPUT: System (E,A,b,c), initial pole estimate s0, tolerance ε ≪ 1

OUTPUT: Approximate dominant pole λ (close to s0) and corresponding right and left eigenvec-

tors x and y

1: Set k = 0

2: while not converged do

3: Solve vk ∈ C
n from (skE−A)vk = b

4: Solve wk ∈ C
n from (skE−A)∗wk = c

5: Compute the new pole estimate

sk+1 = sk−
c∗vk

w∗kEvk

=
w∗kAvk

w∗kEvk

6: The pole λ = sk+1 with x = vk and y = wk has converged if

‖Avk− sk+1Evk‖2 < ε

7: Set k = k+1

8: end while
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The Dominant Pole Algorithm is closely related to Rayleigh Quotient Itera-

tion [75, 76]: the only difference is that in DPA the right hand-sides in Step 3

and 4 remain fixed, while in Rayleigh Quotient Iterations these are updated with

b = Evk−1 and c = E∗wk−1 every iteration. See [84] for a detailed comparison.

The two linear systems that need to be solved in step 3 and 4 of Algorithm 3.1

to compute the Newton update in (3.33) can be efficiently solved using one LU-

factorization LU = skE − A, by noting that U∗L∗ = (skE − A)∗. If an exact LU-

factorization is not available, one has to use inexact Newton schemes, such as in-

exact Rayleigh Quotient Iteration and Jacobi-Davidson style methods [66, 88, 90].

In the next section, extensions of DPA are presented that are able to compute more

than one eigenvalue in an effective and efficient way.

3.2.2.2 Deflation and subspace acceleration

In practical applications often more than one dominant pole is wanted: one is

interested in all the dominant poles, no matter what definition of dominance is used.

Simply running the single pole algorithm DPA for a number of different initial shifts

will most likely result in duplicate dominant poles. A well known strategy to avoid

computation of already found eigenvalues is deflation, see for instance [86]. It is also

known that subspace acceleration may improve the global convergence: for an n×n

problem, the subspace accelerated algorithm converges within at most n iterations,

although in practice it may need only k ≪ n iterations and will almost never build

a full search space of dimension n, but restart every kmax ≪ n iterations. The use

of subspace acceleration requires that every iteration an approximate pole has to

be selected from the available approximations. This also may improve the global

convergence, since better approximations than the initial estimate, which may be a

rather crude approximation, become available during the process.

In the next subsections, variants of DPA for the computation of more than one

pole without and with subspace acceleration are discussed. This variant that does not

use subspace acceleration can be implemented efficiently with only constant costs

for deflation, while the subspace accelerated variant has better global convergence.

Throughout the rest of this chapter, let the (n×k) matrices Xk and Yk have as their

columns the normalized (found) right and left eigenvectors xi and yi (i = 1, . . . ,k) of

(A,E), respectively, and let Λk be a diagonal (k× k) matrix with the corresponding

eigenvalues on its diagonal, i.e. Λk = diag(λ1, . . . ,λk), Y ∗k AXk = Λk and Y ∗k EXk = I.

For ease of notation, the subscript k will be omitted if this does not lead to confusion.

3.2.2.3 DPA with deflation by restriction

It can be verified that if X ≡ Xk and Y ≡Yk have as their columns exact eigenvec-

tors (normalized so that Y ∗EX = I), then the system (Ed ,Ad ,bd ,cd), where
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Ed = (I−EXY ∗)E(I−XY ∗E),

Ad = (I−EXY ∗)A(I−XY ∗E),

bd = (I−EXY ∗)b,

cd = (I−E∗Y X∗)c,

has the same poles, eigenvectors and residues, but with the found λi (i = 1, . . . ,k)

and corresponding Ri transformed to 0. So in order to avoid recomputing the same

pole, DPA could be applied to the deflated system (Ed ,Ad ,bd ,cd) after having found

one or more poles. This would require solves with (sEd −Ad) and (sEd −Ad)
∗ in

step 4 and 5 of Algorithm 3.214, but the following theorem shows that it is sufficient

to only replace b by bd and c by cd to ensure deflation.

Theorem 3.2. [79, Thm. 3.3.1]The deflated transfer function Hd(s) = c∗d(sE −
A)−1bd , where

bd = (I−EXY ∗)b and cd = (I−E∗Y X∗)c,

has the same poles λi and corresponding residues Ri as H(s) = c∗(sE−A)−1b, but

with the residues Ri corresponding to the found poles λi (i = 1, . . . ,k) transformed

to Ri = 0.

Proof. The proof follows by using the definition of residues and basic linear algebra

[79, Thm. 3.3.1].

In other words, by using bd and cd the found dominant poles are degraded to non

dominant poles of Hd(s), while not changing the dominance of the remaining poles.

Hence these poles will not be recomputed by DPA applied to Hd(s). Graphically,

the peaks caused by the found poles are ’flattened’ in the Bode plot (see also Figure

3.8).

Note that if H(s) = c∗(sE −A)−1b+ d with d = 0, then the deflated poles in

fact become zeros of Hd(s). It can be shown that DPA applied to Hd(s) = c∗d(sE−
A)−1bd and DPA applied to Hd̃(s) = c∗d(sEd −Ad)

−1bd produce the same results

[84].

The important result is that the single pole DPA can easily be extended, see Al-

gorithm 3.2, to an algorithm that is able to compute more than one pole, while

maintaining constant costs per iteration, except for iterations in which a pole is

found. The only change to be made to Algorithm 3.1, is when a dominant pole

triplet (λ ,x,y) is found: in that case, the algorithm continues with b and c replaced

by (I−Exy∗)b and (I−E∗yx∗)c, respectively.

This approach has a number of advantages. The implementation is straightfor-

ward and efficient: search spaces, selection strategies and orthogonalization proce-

dures are not needed, so that the computational costs per iteration remain constant,

even if the number of found poles increases. For every found pole only two skew

projections are needed once to compute the new bd and cd , so the costs for defla-

tion are constant. The pseudo code in Algorithm 3.2 can almost literally be used as

14 Note that (sEd−Ad) would never be computed explicitly, and that sparse systems (sEd−Ad)x=
bd can be solved efficiently.
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Fig. 3.8 Exact transfer function (solid) of the New England test system [71], and modal equiva-

lents where the following dominant pole (pairs) are removed one by one: −0.467±8.96i (square),

−0.297± 6.96i (asterisk), −0.0649 (diamond), and −0.249± 3.69i (circle). Note that the corre-

sponding peaks are removed from the Bode plot as well (to see this, check the Bode plot at the

frequencies near the imaginary part of the removed pole).

Matlab code. The special properties of DPA ensure convergence to dominant poles

(locally). Furthermore, the deflation of found poles is numerically stable in the sense

that even if the corresponding transformed residues are not exactly zero, which is

usually the case in finite arithmetic, this will hardly influence the effect of deflation:

firstly, all the poles are left unchanged, and secondly, already a decrease of domi-

nance of the found poles to nondominance (because of the projected in- and output

vectors bd and cd) will shrink the local convergence neighborhood of these poles

significantly, again because of the convergence behavior of DPA [84].

This approach, however, may still suffer from the fact that the convergence be-

havior can be very local and hence may heavily depend on the initial estimates si
0.

Although in practice one often has rather accurate initial estimates of the poles of

interest, this may be problematic if accurate information is not available. It may take

many iterations until convergence if the initial estimate is not in the neighborhood of

a dominant pole. On the other hand, the computational complexity of this problem

depends on the costs of the LU factorization, which in certain practical examples

can be computed very efficiently. In the next section a subspace accelerated version

of DPA is described, that improves the global convergence by using search spaces.
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Algorithm 3.2 Dominant Pole Algorithm with deflation (DPAd)

INPUT: System (E,A,b,c), initial pole estimates s1
0, . . . ,s

p
0 , tolerance ε ≪ 1

OUTPUT: Approximate dominant poles Λ = diag(λ1, . . . ,λp), and corresponding right and left

eigenvectors X = [x1, . . . ,xp] and Y = [y1, . . . ,yp]
1: Set k = 0, i = 0, sk = s1

0

2: while i < p do

3: {Continue until p poles have been found}
4: Solve vk ∈ C

n from (skE−A)vk = b

5: Solve wk ∈ C
n from (skE−A)∗wk = c

6: Compute the new pole estimate

sk+1 = sk−
c∗vk

w∗kEvk

=
w∗kAvk

w∗kEvk

7: if ‖Avk− sk+1Evk‖2 < ε (with ‖vk‖2 = 1) then

8: Set i = i+1

9: Set λii = sk+1

10: Set vk = vk/(w
∗
kEvk)

11: Set X = [X ,vk] and Y = [Y,wk]
12: Deflate: b = b−Evkw∗kb

13: Deflate: c = c−E∗wkv∗kc

14: Set sk+1 = si
0

15: end if

16: Set k = k+1

17: end while

3.2.2.4 Subspace accelerated DPA

A drawback of DPA is that information obtained in the current iteration is dis-

carded at the end of the iteration. The only information that is preserved is contained

in the new pole estimate sk+1. The current right and left approximate eigenvectors

vk and wk, however, may also contain components in the direction of eigenvec-

tors corresponding to other dominant poles. Instead of discarding these approximate

eigenvectors, they are kept in search spaces spanned by the columns of V and W ,

respectively. This idea is known as subspace acceleration.

A global overview of SADPA is shown in Algorithm 3.3. Starting with a single

shift s1, the first iteration is equivalent to the first iteration of the DPA (step 3-4). The

right and left eigenvector approximations v1 and w1 are kept in spaces V and W . In

the next iteration, these spaces are expanded orthogonally, by using modified Gram-

Schmidt (MGS) [62], with the approximations v2 and w2 corresponding to the new

shift s2 (step 5-6). Hence the spaces grow and will contain better approximations.

It can be shown that subspace accelerated DPA, under certain conditions, is

equivalent to subspace accelerated Rayleigh Quotient Iteration and the Jacobi-

Davidson method, see [79, 84] for more details.
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Algorithm 3.3 Subspace Accelerated DPA (SADPA)

INPUT: System (E,A,b,c), initial pole estimate s1 and the number of wanted poles p

OUTPUT: Dominant pole triplets (λi,xi,yi), i = 1, . . . , p

1: k = 1, p f ound = 0, Λ = [ ], X = Y = [ ]
2: while p f ound < p do

3: Solve v from (skE−A)v = b

4: Solve w from (skE−A)∗w = c

5: v = MGS(V,v), V = [V,v/||v||2]
6: w = MGS(W,w), W = [W,w/||w||2]
7: Compute S =W ∗AV and T =W ∗EV

8: (Λ̃ , X̃ ,Ỹ ) = Sort(S,T,W ∗b,V ∗c) {Algorithm 3.4}
9: Dominant approximate eigentriplet of (A,E) is

(λ̂1 = λ̃1, x̂1 =V x̃1/‖V x̃1‖2, ŷ1 =W ỹ1/‖W ỹ1‖2)

10: if ||Ax̂1− λ̂1Ex̂1||2 < ε then

11: (Λ ,X ,Y,V,W,b,c) =

Deflate(λ̂1, x̂1, ŷ1,Λ ,X ,Y,V X̃2:k,WỸ2:k,E,b,c) {Algorithm 3.5}
12: p f ound = p f ound +1

13: Set λ̃1 = λ̃2, k = k−1

14: end if

15: Set k = k+1

16: Set the new pole estimate sk = λ̃1

17: end while

Selection strategy

In iteration k the Petrov-Galerkin approach leads (step 7) to the projected eigen-

problem

W ∗AV x̃ = λ̃W ∗EV x̃,

ỹW ∗AV = λ̃ ỹW ∗EV.

Since the interaction matrices S = W ∗AV and T = W ∗EV are of low dimension

k ≪ n, the eigentriplets (λ̃i, x̃i, ỹi) of this reduced problem can be computed using

the QZ method (or the QR method in the bi-E-orthogonal case (step 1 of Algorithm

3.4). This provides k approximate eigentriplets (λ̂i = λ̃i, x̂i = V x̃i, ŷi = W ỹi) for

(A,E). The most natural thing to do is to choose the triplet (λ̂ j, x̂ j, ŷ j) with the

most dominant pole approximation (step 8-9): compute the corresponding residues

R̂i = (c∗x̂i)(ŷ
∗
i b) of the k pairs and select the pole with the largest |R̂ j|/|Re(λ̂ j)| (see

Algorithm 3.4). The SADPA then continues with the new shift sk+1 = λ̂ j (step 16).

The residues R̂i can be computed without computing the approximate eigenvec-

tors explicitly (step 5 of Algorithm 3.4): if the x̃i and ỹi are scaled so that ỹ∗i T x̃i = 1

(= ŷ∗i Ex̂i), then it follows that the R̂i can be computed as R̂i = ((c∗V )x̃i)(ỹ
∗
i (W

∗b))
(= (c∗x̂i)(ŷ

∗
i b)).

Instead of ŷ∗i Ex̂i = 1 one can also use the scaling ‖ŷi‖2 = ‖x̂i‖2 = 1 when com-

puting approximate residues. In that case the product of the angles ∠(x̂i,c) and
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∠(ŷi,b) is used in the computation of the approximate residues (see also [84]),

which numerically may be more robust.

Algorithm 3.4 (Λ̃ , X̃ ,Ỹ ) = Sort(S,T,b,c)

INPUT: S,T ∈ C
k×k, b,c ∈ C

k

OUTPUT: Λ̃ ∈ C
k, X̃ ,Ỹ ∈ C

k×k with λ1 the pole with largest (scaled) residue magnitude and ỹ1

and x̃1 the corresponding right and left eigenvectors.

1: Compute eigentriplets of the pair (S,T ):

(λ̃i, x̃i, ỹi), ỹ∗i T x̃i = 1, i = 1, . . . ,k

2: Λ̃ = [λ̃1, . . . , λ̃k]

3: X̃ = [x̃1, . . . , x̃k]

4: Ỹ = [ỹ1, . . . , ỹk]
5: Compute residues Ri = (c∗x̃i)(ỹ

∗
i b)

6: Sort Λ̃ , X̃ , Ỹ in decreasing |Ri|/|Re(λ̃i)| order

Deflation

In each iteration step a convergence test (step 10) is done like in DPAd (Al-

gorithm 3.2): if for the selected eigentriplet (λ̂1, x̂1, ŷ1) the norm of the residual

||Ax̂1− λ̂1Ex̂1||2 is smaller than some tolerance ε , it is converged. In general more

than one dominant eigentriplet is wanted and it is desirable to avoid repeated com-

putation of the same eigentriplet. The same deflation technique as used in DPAd can

be applied here (steps 5–6 and 12–13 of Algorithm 3.5, see also Section 3.2.2.3),

and since SADPA continues with bd and cd , no explicit E-orthogonalization of ex-

pansion vectors against found eigenvectors is needed in step 3 and 4. The effect is

similar to the usual deflation in Jacobi-Davidson methods [61]: found eigenvectors

are hard-locked, i.e. once deflated, they do not participate and do not improve dur-

ing the rest of the process (contrary to soft-locking, where deflated eigenvectors still

participate in the Rayleigh-Ritz (Ritz-Galerkin) procedure and may be improved, at

the cost of additional computations and administration, see [68, 69]). In fact, there

is cheap explicit deflation without the need for implicit deflation (cf. [61, remark 5,

p. 106], where a combination of explicit and implicit deflation is used).

If an eigentriplet has converged (steps 11–13 of Alg. 3.3), the eigenvectors are

deflated from the search spaces by reorthogonalizing the search spaces against the

found eigenvectors. This can be done by using modified Gram-Schmidt (MGS) and

by recalling that, if the exact vectors are found, the pencil

((I−EXY ∗)A(I−XY ∗E), (I−EXY ∗)E(I−XY ∗E))

has the same eigentriplets as (A,E), but with the found eigenvalues transformed to

zero (Algorithm 3.6, see also [61, 66]). Since in finite arithmetic only approxima-

tions to exact eigentriplets are available, the computed eigenvalues are transformed
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Algorithm 3.5 (Λ ,X ,Y,Ṽ ,W̃ ,bd ,cd) = Deflate(λ ,x,y,Λ ,X ,Y,V,W,E,b,c)

INPUT: λ ∈ C, x,y ∈ C
n, Λ ∈ C

p, X ,Y ∈ C
n×p, V,W ∈ C

n×k, E ∈ C
n×n, b,c ∈ C

n

OUTPUT: Λ ∈C
q, X ,Y ∈C

n×q,Ṽ ,W̃ ∈C
n×k−1,bd ,cd ∈C

n, where q = p+1 if λ has zero imag-

inary part and q = p+2 if λ has nonzero imaginary part.

1: Λ = [Λ ,λ ]
2: Set x = x/(y∗Ex)
3: X = [X ,x]
4: Y = [Y,y]
5: Deflate: bd = b−Ex(y∗b)
6: Deflate: cd = c−E∗y(x∗c)
7: if imag(λ ) 6= 0 then

8: {Also deflate complex conjugate}
9: Λ = [Λ , λ̄ ]

10: x = x̄, X = [X ,x]
11: y = ȳ, Y = [Y,y]
12: Deflate: bd = bd −Ex(y∗bd)
13: Deflate: cd = cd −E∗y(x∗cd)
14: end if

15: Ṽ = W̃ = [ ]
16: for j = 1, . . . ,k do

17: Ṽ = Expand(Ṽ ,X ,Y,E,v j) {Algorithm 3.6}

18: W̃ = Expand(W̃ ,Y,X ,E∗,w j) {Algorithm 3.6}

19: end for

to η ≈ 0. The possible numerical consequences of this, however, are limited, since

SADPA continues with bd and cd , and as argued in Section 3.2.2.3, the residues of

the found poles are transformed to (approximately) zero.

If a complex pole has converged, its complex conjugate is also a pole and the

corresponding complex conjugate right and left eigenvectors can also be deflated. A

complex conjugate pair is counted as one pole. The complete deflation procedure is

shown in Algorithm 3.5.

After deflation of the found pole(s), SADPA continues with the second most

dominant approximate pole (steps 13–16 of Alg. 3.3).

Algorithm 3.6 V = Expand(V,X ,Y,E,v)

INPUT: V ∈ C
n×k with V ∗V = I, X ,Y ∈ C

n×p, E ∈ C
n×n, v ∈ C

n, Y ∗EX diagonal, Y ∗EV = 0

OUTPUT: V ∈ C
n×(k+1) with V ∗V = I and

vk+1 = ∏
p
j=1(I−

x jy
∗
j E

y∗j Ex j
) ·v

1: v = ∏
p
j=1(I−

x jy
∗
j E

y∗j Ex j
) ·v

2: v = MGS(V,v)
3: V = [V,v/||v||2]
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Further improvements and remarks

It may happen that the search spaces V and W become high-dimensional, espe-

cially when a large number of dominant poles is wanted. A common way to deal

with this is to do a thick restart [61, 86]: if the subspaces V and W reach a cer-

tain maximum dimension kmax ≪ n, they are reduced to a dimension kmin < kmax by

keeping the kmin most dominant approximate eigentriplets; the process is restarted

with the reduced V and W (already converged eigentriplets are not part of the active

subspaces V and W ). This procedure is repeated until all poles are found.

Furthermore, as more eigentriplets have converged, approximations of new eigen-

triplets may become poorer or convergence may be hampered, due to rounding er-

rors in the orthogonalization phase and the already converged eigentriplets. It is

therefore advised to take a small tolerance ε ≤ 10−10. Besides that, as the estimate

converges to a dominant pole, the right and left eigenvectors computed in step 3 and

4 of Algorithm 3.3 are usually more accurate than the approximations computed in

the selection procedure: if the estimate sk is close to an eigenvalue λ , then skE−A

may become ill-conditioned, but, as is discussed in [78] and [77, Section 4.3], the

solutions vk and wk have large components in the direction of the corresponding

right and left eigenvectors (provided b and c have sufficiently large components in

those directions). In the deflation phase, it is therefore advised to take the most ac-

curate of both, i.e., the approximate eigenvector with smallest residual. It may also

be advantageous to do an additional step of two-sided Rayleigh quotient iteration to

improve the eigenvectors.

SADPA requires only one initial estimate. If rather accurate initial estimates are

available, one can take advantage of this in SADPA by setting the next estimate after

deflation to a new initial estimate (step 16 of Algorithm 3.3).

Every iteration, two linear systems are to be solved (step 3 and 4). As was already

mentioned, this can efficiently be done by computing one LU-factorization and solv-

ing the systems by using L and U , and U∗ and L∗, respectively. Because in practice

the system matrices A and E are often very sparse and structured, computation of

the LU-factorizations can be relatively inexpensive.

The selection criterion can easily be changed to another of the several existing

indices of modal dominance [56,63,93]. Furthermore, the strategy can be restricted

to considering only poles in a certain frequency range. Also, instead of providing

the number of wanted poles, the procedure can be automated even further by pro-

viding the desired maximum error |H(s)−Hk(s)| for a certain frequency range: the

procedure continues computing new poles until the error bound is reached. Note

that such an error bound requires that the transfer function of the complete model

can be evaluated efficiently for the frequency range of interest.

A numerical example

For illustrational purposes, SADPA was applied to a transfer function of the New

England test system, a model of a power system. This small benchmark system has
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66 state variables (for more information, see [71]). The tolerance used was ε =
10−10 and no restarts were used. Every iteration, the pole approximation λ̂ j with

largest |R̂ j|/|Re(λ̂ j)| was selected. Table 3.1 shows the found dominant poles and

the iteration number for which the pole satisfied the stopping criterion. Bodeplots of

two modal equivalents are shown in Figure 3.9. The quality of the modal equivalent

increases with the number of found poles, as can be observed from the better match

of the exact and reduced transfer function.

Table 3.1 Results for SADPA applied to the New England test system (s1 = 1i).

#poles #states new pole iteration Bodeplot

1 2 −0.4672±8.9644i 13 -

2 4 −0.2968±6.9562i 18 -

3 5 −0.0649 21 Figure 3.9 (left)

4 7 −0.2491±3.6862i 25 -

5 9 −0.1118±7.0950i 26 -

6 11 −0.3704±8.6111i 27 Figure 3.9 (right)
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Fig. 3.9 Bode plot of 5th order (left) and 11th order (right) modal equivalent, complete model and

error for the transfer function of the New England test system (66 states in the complete model).

3.2.3 Generalizations to other eigenvalue problems

In this section, four variants of the dominant pole algorithm presented in the pre-

vious section are briefly discussed. In Sect. 3.2.3.1, the theory is extended to multi-

input multi-ouput systems. A variant of DPA that computes the dominant zeros of

a transfer function is described in Sect. 3.2.3.2. Section 3.2.3.3 describes the ex-

tension to higher-order dynamical systems. Finally, in Sect. 3.2.3.4 it is shown how

DPA can be used for the computation of eigenvalues most sensitive to parameter

changes.
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3.2.3.1 MIMO systems

For a multi-input multi-output (MIMO) system

{
Eẋ(t) = Ax(t)+Bu(t)
y(t) = C∗x(t)+Du(t),

where A,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
n×p, x(t) ∈ R

n, u(t) ∈ R
m, y(t) ∈ R

p and

D ∈ R
p×m, the transfer function H(s) : C→ C

p×m is defined as

H(s) =C∗(sE−A)−1B+D. (3.34)

The dominant poles of (3.34) are those s ∈ C for which the largest singular value

σmax(H(s))→∞. For square transfer functions (m = p), there is an equivalent crite-

rion: the dominant poles are those s ∈ C for which the absolute smallest eigenvalue

|λmin(H
−1(s))| → 0. This leads, for square transfer functions, to the following New-

ton scheme:

sk+1 = sk−
1

µmin

1

v∗C∗(skE−A)−2Bu
,

where (µmin,u,v) is the eigentriplet of H−1(sk) corresponding to λmin(H
−1(sk)).

For a dominant pole, the mountain spreads of σmax are larger and, therefore, the

neighborhood of convergence attraction is larger than for a less dominant pole,

which would show just a spike. An algorithm for computing the dominant poles of a

MIMO transfer function can be readily derived from Alg. 3.1. The reader is referred

to [73] for the initial MIMO DPA algorithm and to [80] for an algorithm SAMDP,

similar to SADPA, generalizations to non-square MIMO systems and more details.

3.2.3.2 Computing the zeros of a transfer function

The zeros of a transfer function H(s) = c∗(sE −A)−1b+ d are those s ∈ C for

which H(s) = 0. An algorithm, similar to Alg. 3.1, can be derived by noting that a

Newton scheme for computing the zeros of a transfer function is given by

sk+1 = sk +
c∗(skE−A)−1b+d

c∗(skE−A)−2b
. (3.35)

In fact, it can be shown that the dominant zeros can be computed as the dominant

poles of the inverse transfer function [H(s)]−1 = c∗z (sEz−Az)
−1bz + dz, which has

the realization

Az =

[
A b

cT d

]
, Ez =

[
E 0

0 0

]
,

bz =

[
0

−1

]
, cz =

[
0

1

]
, dz = 0,
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In other words, the dominant zeros of H(s) can be computed by applying DPA to

[H(s)]−1. See [72] for further details.

3.2.3.3 Polynomial eigenvalue problems

The main idea of using Newton’s method to find dominant poles can be gener-

alized to higher order systems [83]. For the second-order transfer function H(s) =
c∗(s2M+ sC+K)−1b, for instance, the scheme becomes

sk+1 = sk−
c∗v

w∗(2skM+C)v
,

where v = (s2
kM + skC+K)−1b and w = (s2

kM + skC+K)−∗c. The efficient use of

subspace acceleration on large scale second-order eigenvalue problems is described

in [83].

3.2.3.4 Computing eigenvalues sensitive to parameter changes

Let p ∈ R be a system parameter (e.g., a resistor value R, or 1/R, in an electric

circuit), and let A(p) and E(p) be matrices that depend on p. The derivative of an

eigenvalue λ of the pencil (A(p),E(p)), with left and right eigenvectors y ≡ y(p)
and x≡ x(p), to a parameter p is given by [65, 74]

∂λ

∂ p
=

y∗( ∂A
∂ p
−λ ∂E

∂ p
)x

y∗Ex
. (3.36)

The derivative (3.36) is often called the sensitivity (coefficient) of λ . Assuming

that ∂E
∂ p

= 0, with y and x scaled so that y∗Ex = 1, the eigenvalue derivative (3.36)

becomes
∂λ

∂ p
= y∗

∂A

∂ p
x. (3.37)

The larger the magnitude of the derivative (3.37), the more sensitive eigenvalue λ
is to changes in parameter p. In practical applications such information is useful

when, for instance, a system needs to be stabilized by moving poles from the right

half-plane to the left half-plane [82, 94].

Suppose that the derivative of A to parameter p has rank 1 and hence can be

written as
∂A

∂ p
= bc∗, (3.38)

where b,c ∈ R
n are vectors. Then the sensitivity of an eigenvalue λ with left and

right eigenvectors y and x (with y∗Ex = 1) becomes
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∂λ

∂ p
= y∗

∂A

∂ p
x = (y∗b)(c∗x) = (c∗x)(y∗b). (3.39)

In the right-hand side of (3.39) one recognizes the residues of the transfer function

H(s) = c∗(sE−A)−1b. Consequently, the most sensitive eigenvalues of the pencil

(A(p),E) can be computed by applying DPA to (E,A,b,c), with b and c defined by

(3.38).

If ∂A
∂ p

has rank higher than 1, one can change Alg. 3.1 as follows to compute the

most sensitive eigenvalues: replace b and c by ∂A
∂ p

vk−1 and
(

∂A
∂ p

wk−1

)∗
, respectively.

The algorithm based on this is called SASPA. For more details and generalizations

to higher rank derivatives and multiparameter systems, see [82].

Having obtained, with the use of SADPA [81] or SAMDP [80], a reduced model

for a large scale system incorporating feedback controllers at nominal parameters,

one may want to find other reduced models for off-nominal parameters in these

controllers. The SADPA and SAMDP are ideal algorithms for this application, since

they benefit from the reduced model information for the nominal parameters. Note

that only a true modal equivalent can benefit from this sensitivity feature, through

the use of the SASPA [82].

3.2.4 Improving Krylov models by using dominant poles

It is well known that for some examples moment matching works well, while

reduced order models computed by modal approximation are of low quality, and the

other way around [57,79]. Generally speaking, modal approximation performs best

if there are k ≪ n dominant poles with residues much larger than the residues of

the non-dominant poles. In other words, there is a k ≪ n for which one has |R1| ≥
|R2| ≥ . . . ≥ |Rk| ≫ |Rk+1| ≥ |Rn−1| ≥ |Rn|, so that truncation at the kth pole does

not give a large error [63]. Moment matching based approaches, on the other hand,

perform best if the moments show a similar steep decay. There is, however, one

additional complication for Krylov based moment matching approaches, that is best

explained by an example. Figure 3.10 shows the Bode magnitude plots of an exact

transfer function and of two reduced order models: one modal approximation and

a moment matching approximation. While the modal approximation captures the

dominant dynamics, the moment matching model deviates for ω > 4 rad/s.

The modal approximation matches the original transfer function well because

it is built from the 7 most dominant poles. The moment matching Arnoldi model

(k = 30) was built using left and right Krylov subspaces with shift s0 = 0. There-

fore, the match for frequencies up to ω = 4 rad/s is good. For higher frequencies,

however, this approach suffers from a well known property of Arnoldi methods,

that were originally developed for the computation of eigenvalues: the eigenvalue

approximations, or Ritz values, tend to approximate the eigenvalues at the outside

of the spectrum [92]. This can also be seen in Fig. 3.11, where the circles denote

the poles of the moment matching model (note the inverses of the poles are shown):
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Fig. 3.10 Frequency response of complete system (n = 66), modal approximation (k = 12), and

dual Arnoldi model (k = 30).

they match the eigenvalues at the outside. The dominant poles, however, may be

located anywhere in the spectrum, as can also be seen in Fig. 3.11 (squares). This

explains why the Arnoldi model fails to capture the peaks.
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Fig. 3.11 Relevant part of pole spectrum of complete system (n = 66), modal approximation (k =
12), and dual Arnoldi model (k = 30).

Based on the above observations and theory in [64], the idea is to use the imag-

inary parts of dominant poles as shifts for the rational Krylov approach, so that

resonance peaks located well within the system frequency bandwidth can also be
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captured by Krylov methods. The combined dominant pole – Krylov approach can

be summarized as follows:

1. Compute k≪ n dominant poles λ j = α j±β ji, with j = 1, . . .k and i =
√
−1.

2. Choose interpolation points s j = β ji.

3. Construct Vj,Wj ∈C
n×k j such that their columns are bases for the rational Krylov

[85] spaces

colspan(Vj) = K
k j((s jE−A)−1E,(s jE−A)−1b)

and

colspan(Wj) = K
k j((s jE−A)−∗E∗,(s jE−A)−∗c),

respectively.

4. Project with V = orth([V1, . . . ,Vk]) and W = orth([W1, . . . ,Wk]), where orth con-

structs an orthogonal basis for the spaces. The size of the reduced model is at

most K = ∑
k
j=1 k j, matching 2K moments.

3.2.5 Numerical examples

3.2.5.1 Brazilian Interconnected Power System (BIPS)

The Brazilian Interconnected Power System (BIPS) is a year 1999 planning

model that has been used in practice (see [81] for more technical details). The size

of the sparse matrices A and E is n = 13,251 (the number of states in the dense state

space realization is 1,664). The corresponding transfer function has a non-zero di-

rect transmission term d. Fig. 3.12 shows the frequency response of the complete

model and the reduced model (41 states) together with the error. Both the magnitude

and the phase plots show good matches of the exact and the reduced transfer func-

tions (a relative error of approximately ||H(s)−Hk(s)||/||Hk(s)||= 0.1, also for the

DC-gain H(0)). Fig. 3.13 shows the corresponding step response (step u = 0.01)15.

The reduced model nicely captures the system oscillations. The reduced model (30

poles, 56 states) was computed by SADPA in 341 LU-factorizations (kmin = 1,

kmax = 10). This reduced model could be reduced further to 41 states (22 poles)

by removing less dominant contributions, without decreasing the quality of the re-

duced model much.

Sensitivity of BIPS

To study the sensitivity of the dominant poles and system stability of BIPS, the

gain (Kpss) of one of the generators is varied between 0 and 30, with increments

15 If hk(t) is the inverse Laplace transform of Hk(s), the step response for step u(t) = c of the

reduced model is given by y(t) =
∫ t

0 h(t)u(t) = c(∑k
i=1(

Ri

λi
(exp(λit)−1))+d).
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Fig. 3.12 Bode plot (with modulus and phase) of the modal equivalent, the complete model and

the error for the transfer function Psc(s)/Bsc(s) of BIPS (41 in the modal equivalent, 1664 in the

complete model).

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

4

5
x 10

−5

Time (s)

D
e
v
ia

ti
o
n
 P

o
w

e
r 

F
lo

w
 L

in
e
 (

p
u
)

Reduced model (k=41)
Complete model

Fig. 3.13 Step responses for transfer function Psc(s)/Bsc(s) of BIPS, complete model and modal

equivalent (41 states in the modal equivalent, 1664 in the complete model, step disturbance of

0.01 pu).

of 0.5. Figure 3.14 shows the traces for the most sensitive poles as computed by

SASPA (Section 3.2.3.4, see also [82]). The CPU time needed for the 60 runs was

1450 s. A root-locus plot for all poles, computed using the QR method, confirmed

that the most sensitive poles were found, but needed 33600 s. Hence, for large-scale

systems, SASPA is a very effective and efficient way to produce relevant root-locus

plots.
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Fig. 3.14 Root locus plot of sensitive poles computed by SASPA. As the gain increases, the critical

rightmost pole crosses the imaginary axis and the 5% damping ratio boundary. Squares denote

initial pole locations.

3.2.5.2 The breathing sphere

Fig. 3.15 shows the frequency response of a 70th order Second-Order Arnoldi

[58] reduced model of vibrating body from sound radiation analysis (n = 17611

degrees of freedom, see [70]), that was computed using the complex parts iβ of

five dominant poles λ = α + iβ (computed by Quadratic DPA [83]) as interpola-

tion points, as described in Sect. 3.2.4. This model is more accurate than reduced

order models based on standard Krylov methods and matches the peaks up to ω = 1

rad/s, because of use of shifts near the resonance frequencies. This model is a good

example of the combined dominant pole – rational Krylov approach, since modal

approximations of similar quality require too much CPU time, while Krylov models

with uniformly spaced shifts do not capture the peaks.

3.2.6 Concluding remarks

In this chaper eigenvalue methods, based on the Dominant Pole Algorithm, for

the computation of a few specific eigenvalues were discussed. The methods can

be used to solve large-scale eigenvalue problems arising in real-life applications

and simulation of dynamical systems, for instance for the computation of transfer

function dominant poles and zeros, and eigenvalues most sensitive to parameter

changes. Furthermore, the corresponding eigenvectors can be used for construction

of reduced-order models (modal equivalents) or to improve Krylov-based models.

The dominant poles can be used to determine shifts in rational Krylov methods for
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Krylov method with resonance frequencies as complex interpolation points.

computing reduced-order models. The practical application of the algorithms was

illustrated by numerical experiments with real-life examples.
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3.3 Passivity Preserving Model Order Reduction

16In this Section we are concerned with dynamical systems ∑ = (E,A,B,C,D)
of the form {

Eẋ(t) = Ax(t)+Bu(t)
y(t) = C∗x(t)+Du(t),

(3.40)

where A,E ∈ R
n×n, E may be singular (we assume E is symmetric and positive

(semi) definite), B ∈ R
n×m, C ∈ R

n×p, D ∈ R
p×m, x(t) ∈ R

n, y(t) ∈ R
p and u(t) ∈

R
m. The matrix E is called the descriptor matrix, the matrix A is called the state

space matrix, the matrices B and C are called the input and output map, respectively,

and D is the direct transmission map. The vectors u(t) and x(t) are called the input

and the state vector, respectively, and y(t) is called the output of the system. The

dimension n of the state is defined as the complexity of the system ∑. These systems

often arise in circuit simulation, for instance, and in this application the system ∑ is

often passive17.

The transfer function G : Cm → C
p, of (3.40),

G(s) = C∗(sE−A)−1B+D,

can be obtained by applying the Laplace transform to (3.40) under the condition

x(0)=0. The transfer function relates outputs to inputs in the frequency domain via

Y(s) = G(s)U(s),, where Y(s) and U(s) are the Laplace transforms to y(t) and u(t),
respectively.

We want to reduce the original system ∑ to a reduced order model ∑̂ = (Ê, Â, B̂,
Ĉ,D)

{
Ê ˙̂x(t) = Âx̂(t)+ B̂u(t)

ŷ(t) = Ĉ
∗
x̂(t)+Du(t),

(3.41)

where Â, Ê ∈ R
k×k, B̂ ∈ R

k×m, Ĉ ∈ R
k×p, D ∈ R

p×m, x̂(t) ∈ R
k, ŷ(t) ∈ R

p, u(t) ∈
R

m and k≪ n.

It is important to produce a reduced model that preserves stability and passivity.

16 Section 3.3 has been written by: Maryam Saadvandi and Joost Rommes. For further details see

the MSc-Thesis of the first author [107]. Her further research is found in her Ph.D.-Thesis [108].
17 Passivity condition is one of the important concepts and many researches have been studied

it, [96–100, 103, 105, 106].
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Remark 3.1. Throughout the reminder of this chapter it is assumed that:

• m = p such that B ∈ R
n×p, C ∈ R

p×n and D ∈ R
p×p.

• A is a stable matrix i.e. Re(λi)< 0 with λi ∈ σ(A), i = 1, · · · ,n.

• The system ∑ is observable and controllable [111] and it is passive.

Spectral zeros play an important role in guaranteeing passivity as will be ex-

plained in the next sections. In Section 3.3.3 the spectral zeros and the method for

computing them are introduced. In the following we describe two projection re-

duced order methods from literature for reducing the system, that aim to produce a

reduced transfer function, which has the specified roots at selected spectral zeros.

These methods have been developed by Sorensen [109] and by Antoulas [95].

3.3.1 Model Reduction via Projection Matrices

We assume that M and N are k-dimensional subspaces of Rn. V and W are built

for reducing the system by a projection method. So we construct V = {v1, · · · ,vk} ∈
R

n×k, of which the column vectors vi form a basis of M, and W = {w1, · · · ,wk} ∈
R

n×k, of which the column vectors w j form a basis of N (we are interested in W ∗V =
Ik). We assume that V and W are time-invariant.

We suppose x ∈M is an approximate solution of Σ . Hence we can write x = Vx̂,

where x̂ ∈ R
k and ẋ = V ˙̂x. Then the residual is

Eẋ−Ax−Bu = EV ˙̂x−AVx̂−Bu.

Next, we assume that this residual is orthogonal to N

W∗(EV ˙̂x−AVx̂−Bu) = 0,
⇒ W∗EV ˙̂x−W∗AVx̂−W∗Bu = 0.

Then the reduced model Σ̂ becomes:

{
Ê ˙̂x(t) = Âx̂(t)+ B̂u(t),

ŷ(t) = Ĉ
∗
x̂(t)+Du(t),

where Â=W∗AV∈R
k×k, Ê=W∗EV∈R

k×k, B̂=W∗B∈R
k×m, Ĉ=CV∈R

k×p,

x̂(t) = Vx̂ ∈ R
k and y = ŷ(t) ∈ R

p [104].

3.3.2 Passive Systems

We can reduce the model by V and W, which are constructed in the previous

Section 3.3.1. With arbitrary V and W, some features of the original system may

not be preserved. One of these properties, which we are interested in to preserve, is
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passivity.

The matrix A is assumed to be stable, which means all its eigenvalues are in the

open left half-plane. Passivity is defined using an energy concept.

Definition 3.3. A system is passive if it does not generate energy internally, and

strictly passive if it consumes or dissipates input energy [109].

In other words Σ is passive if

Re

∫ t

−∞
u(τ)∗y(τ)dτ ≥ 0, ∀t ∈ R, ∀u ∈ L2(R)

or strictly passive if

∃δ > 0 s.t. Re

∫ t

−∞
u(τ)∗y(τ)dτ ≥ δ ·Re

∫ t

−∞
u(τ)∗u(τ)dτ, ∀t ∈R, ∀u ∈L2(R)

Another more practical definition of passivity is based on the transfer function G(s)
in the frequency domain:

Definition 3.4. [109] The system Σ is passive iff the transfer function G(s) is pos-

itive real, which means that:

1. G(s) is analytic for Re(s)> 0,

2. G(s̄) = G(s), ∀s ∈ C,

3. G(s)+(G(s))∗ ≥ 0 for Re(s)> 0 where

(G(s))∗ = B∗(sE∗−A∗)−1C+D∗.

We try to construct the V and W in such a way that the transfer function of the

reduced model has the above three properties. Property 3 implies the existence of a

stable rational matrix function K(s) ∈ R
p×p (with stable inverse) such that

G(s)+(G(−s))∗ = K(s)K∗(−s).

We prove this only for the scalar case p = 1 of the transfer function. Let G(s) be

a scalar, positive-real transfer function with real coefficients. The spectral zeros of

G are defined as the zeros of G(s)+G∗(−s). Since all coefficients of G are real,

we have G∗(−s) = G(−s). Since G(s) is scalar, we can write G(s) = n(s)
d(s) , where

n(s) and d(s) are polynomials of degree ≤ k+1 (in this note we assume k is even;

a similar explanation holds when k is odd). Note that (G(−s))∗ = n∗(−s)
d∗(−s) . Now we

have
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G(s)+(G(−s))∗ =
n(s)

d(s)
+

n∗(−s)

d∗(−s)

=
n(s)d∗(−s)+d(s)n∗(−s)

d(s)d∗(−s)

=
r(s)r∗(−s)

d(s)d∗(−s)
. (3.42)

We focus on proving (3.42). We will use the following identies:

n(s) =
k/2

∑
i=0

ν2is
2i +

k/2

∑
i=0

ν2i+1s2i+1 = A+B,

d(s) =
k/2

∑
i=0

δ2is
2i +

k/2

∑
i=0

δ2i+1s2i+1 =C+D.

It is easy to see that

n(−s) =
k/2

∑
i=0

ν2is
2i−

k/2

∑
i=0

ν2i+1s2i+1 = A−B,

d(−s) =
k/2

∑
i=0

δ2is
2i−

k/2

∑
i=0

δ2i+1s2i+1 =C−D.

For the sum n(s)d(−s)+n(−s)d(s) we then have

n(s)d(−s)+n(−s)d(s) = (A+B)(C−D)+(A−B)(C+D) = 2AC−2BD

= 2

[
k/2

∑
i=0

ν2is
2i

][
k/2

∑
i=0

δ2is
2i

]
−2

[
k/2

∑
i=0

ν2i+1s2i+1

][
k/2

∑
i=0

δ2i+1s2i+1

]

= ṽ(s)− w̃(s).

Note that

ṽ(s) = α0 +α1s2 +α2s4 + · · ·+αks2k,

w̃(s) = β1s2 +β2s4 +β3s6 + · · ·+βk+1s2k+2.

So, we have

t(s) := ṽ(s)− w̃(s) = α0 +(α1−β1)s
2 + · · ·+(αk−βk)s

2k−βk+1s2k+2.

Clearly, if s0 is a zero of t(s), so is −s0. Consequently, we can factorize t(s) as

t(s) = r(s)r(−s). Summarizing, we finally have

n(s)d(−s)+n(−s)d(s) = ṽ(s)− w̃(s) = t(s) = r(s)r(−s),



62 Chapter 3 Authorgroup

wich proves (3.42) �.

This last result equals K(s)K∗(−s), i.e., this is the spectral factorization of G. Here

K is a called the spectral factor of G. The zeros of K, i.e. the λi, i = 1, · · · ,n such

that det(K(λi)) = 0, are the spectral zeros of G.

3.3.3 Spectral Zeros and Generalized Eigenvalue Problem

We start this section with explaining a generalized eigenvalue problem, which

Sorensen used in [109]. It brings together the theory of positive real interpolation by

Antoulas [95] and the invariant subspace method for interpolating the spectral zeros

by Sorensen.

First we recall that for the transfer function G(s) we have

G(s) = C∗(sE−A)−1B+D, and thus,

(G(−s))∗ = B∗(−sE∗−A∗)−1C+D∗,

= B∗(sE∗− (−A∗))−1(−C)+D∗.

Then we compute G+G∗,18

G(s)+(G(−s))∗ = (C∗(sE−A)−1B+D)+(B∗(sE∗− (−A∗))−1(−C)+D∗)

=
[

C∗ B∗
][ (sE−A)−1 0

0 (sE∗− (−A∗))−1

][
B

−C

]
+(D+D∗)

=
[

C∗ B∗
](

s

[
E 0

0 E∗

]
−
[

A 0

0 −A∗

])−1 [
B

−C

]
+(D+D∗).

Note that this is the transfer function of the following system:





[
E 0

0 E∗

]
ẋ(t) =

[
A 0

0 −A∗

]
x(t)+

[
B

−C

]
u(t)

y(t) =
[

C B
]∗

x(t)+(D+D∗)u(t)

(3.43)

Let

A=




A 0 B

0 −A∗ −C

C∗ B∗ D+D∗


 and E=




E

E∗

0


 .

18 Block wise inversion:

[
A B

C D

]−1

=

[
A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
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The finite spectral zeros of G are the set of all finite complex numbers λ such that

Rank(A−λE)< 2n+ p,

i.e., the finite generalized eigenvalues σ(A,E). The set of spectral zeros is denoted

as SG.

Lemma 3.1. If λ is a generalized eigenvalue σ(A− λE) in SG then −λ̄ also be-

longs to SG, i.e.,

λ ∈ SG ⇒−λ̄ ∈ SG since Aq = λEq⇒ q̃∗A= (−λ̄ )q̃∗E,

where q∗ = [x∗,y∗,z∗] is a right eigenvector and q̃∗ = [y∗,−x∗,z∗]. Also

λ ∈ SG ⇒−λ̄ ∈ SG since rA= λ rE⇒Ar̃∗ = (−λ̄ )Er̃∗,

where r∗ = [x1∗,y1∗,z1∗] is a left eigenvector and r̃∗ = [−y1∗,x1∗,z1∗].

Proof: If λ ∈ σ(A−λE) and q is the corresponding eigenvector then

Aq = λEq

or 


A 0 B

0 −A∗ −C

C∗ B∗ D+D∗






x

y

z


= λ




E

E∗

0






x

y

z




By taking conjugates and changing rows one obtains

[
y∗ −x∗ z∗

]



A 0 B

0 −A∗ −C

C∗ B∗ D+D∗


=−λ̄

[
y∗ −x∗ z∗

]



E

E∗

0


 , or

q̃∗A=−λ̄ q̃∗E.

Now we can conclude that −λ̄ ∈ SG and that q̃∗ is its corresponding eigenvector.

The proof is similar for the left eigenvectors [109]. �

If specified spectral zeros are preserved (interpolated) in the reduced model with

SĜ then a passive reduced model will result. For real systems, SĜ must include

conjugate pairs of spectral zeros. This result is based on Antoulas’ theorem [95]:

Theorem 3.3 (Antoulas). Suppose SĜ ⊂ SG and also that Ĝ(λ ) = G(λ ) for all λ ∈
SĜ and that Ĝ is a minimal degree rational interpolant of the values of G on the set

SĜ. Then the reduced system ∑̂ with transfer function Ĝ is both stable and passive.
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3.3.4 Passivity Preserving Model Reduction

Theorem 3.3 indicates that Antoulas’s approach [95] preserves passivity for the

reduced model when spectral zero interpolation is applied. The interpolation is

guaranteed by building the projection matrices using a Krylov subspace method

[102, 110]. Antoulas’ method [95] significantly differs from PRIMA [106]. For a

detailed comparison between PRIMA and Antoulas’s approach we refer to [104].

In Antoulas’ method it is assumed that the system Σ with transfer function G(s) is

passive. Then one defines a set S1 ⊂ SGstable
where SGstable

is the set of stable spectral

zeros and one takes S2 = −S1. Antoulas [95] has shown that the reduced system Σ̂
with transfer function Ĝ(s) is passive if the set of interpolation points is S1∪S2.

A second approach has been introduced by Sorensen [109], which can be seen as an

interpolatory model reduction too. It is based on invariant subspaces. In this method

it is not necessary that the spectral zeros (interpolation points) are computed in

advance. Sorensen’s approach transfers the model reduction problem into an eigen-

value problem. In this case the eigenvalues are the spectral zeros of the transfer

function of the original system. Then the projection matrices are built from a basis

for a chosen invariant subspace.

Choosing different spectral zeros gives us different invariant subspaces, which re-

turn different reduced models. Although these reduced models are passive, they may

not be a good approximation to the original system. So the selection of spectral ze-

ros must guarantee that the reduced model is a good approximation to the original

ones.

In large scale problems in which the eigen computation of the resulting highly-

structured eigenvalue problem should be done iteratively, all selection criteria can

not be satisfied. So the problem has two goals: the first one is to have a good ap-

proximation of the original model, the second one is to be suitable as an iterative

scheme for large-scale dynamical systems.

3.3.5 Model Reduction by Projection (Sorensen [109])

We will construct a basis for a selected invariant subspace of the pair (A,E). Let

AQ = EQR

be a partial real Schur decomposition for the pair (A,E). Then, Q∗Q = I and R is

real and quasi-upper triangular. Let Q = [X∗,Y∗,Z∗]∗ be partitioned in accordance

with the block structure of A:




A 0 B

0 −A∗ −C

C∗ B∗ D+D∗






X

Y

Z


=




E

E∗

0






X

Y

Z


R
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⇒




A 0 B

0 −A∗ −C

C∗ B∗ D+D∗






X

Y

Z


=




EX

E∗Y
0


R (3.44)

The projection will be constructed from X and Y and the reduced model will be

obtained out of these. Here it will be useful to have the following lemma [109].

Lemma 3.2. Suppose that R in (3.44) satisfies Re(λ )> 0, ∀λ ∈σ(R). Then X∗E∗Y=
Y∗EX is symmetric.

Proof: We start with

AQ = EQR. (3.45)

By (3.45) and according to the previous proof we have

Q̂
∗
A= (−R∗)Q̂

∗
E where Q̂

∗
=

[
Y∗ −X∗ Z∗

]
, (3.46)

If we multiply equation (3.45) with Q̂
∗

from the left, then we get

Q̂
∗
AQ = Q̂

∗
EQR. (3.47)

We substitute the right part of equation (3.46) in the left part of equation (3.47),

giving

(−R∗)Q̂
∗
EQ = Q̂

∗
EQR

⇒ R∗Q̂
∗
EQ+ Q̂

∗
EQR = 0. (3.48)

Here

Q̂
∗
EQ =

[
Y∗ −X∗ Z∗

]



E

E∗

0






X

Y

Z




= Y∗EX−X∗E∗Y. (3.49)

If we substitute (3.49) in (3.48) we obtain

R∗(Y∗EX−X∗E∗Y)+(Y∗EX−X∗E∗Y)R = 0. (3.50)

Therefore the equation (3.50) has the unique solution19:

Y∗EX−X∗E∗Y = 0,

and hence

Y∗EX = X∗E∗Y,

19 (3.50) is a simple form (R∗X + XR = 0) of a Lyapunov equation of the more general type

AX −XB =C (which has a unique solution if σ(A)∩σ(B) =⊘). Due to the condition Re(λ )> 0

for λ in σ(R), we have that σ(R∗)∩σ(−R) =⊘. Hence the Lyapunov equation (3.50) has a unique

(zero) solution.
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which completes the proof.�

For the construction of V and W as projections, we first have to find a basis for an

invariant subspace [101] with all eigenvalues of R in the right half-plane.

Let QxS2Q∗y = X∗Y be the SVD of X∗Y and note that Qy = QxJ where J is a

signature matrix by virtue of the fact that X∗Y is symmetric.

If S≥ 0 is nonsingular, put

V = XQxS−1

W = YQyS−1.
(3.51)

It follows that

W∗V = (YQyS−1)∗XQxS−1

= S−∗Q∗yY∗XQxS−1

(include the SVD form of X∗Y) = S−∗Q∗yQy(S
2)∗Q∗xQxS−1

(Qx and Qy are unitary matrices) = S−∗S∗S∗S−1

= I.

and also we have

V∗W = (W∗V)∗ = I.

Now from the SVD of X∗Y, let

X̂ = S(Qx)
∗

Ŷ = S(Qy)
∗,

and define

V=




V 0 0

0 W 0

0 0 I


 and W=




W 0 0

0 V 0

0 0 I


 .

It is obvious that W∗
V= I and that

VX̂ = (XQxS−1)(SQ∗x),

= XQxQ∗x ,

(Q∗x is unitary matrix) = X.

Similarly, WŶ = Y, so we have




X

Y

Z


=




V 0 0

0 W 0

0 0 I






X̂

Ŷ

Ẑ


 .



3 Model Order Reduction — Methods, Concepts and Properties 67

Therefore

Â=W
∗
AV=




Â 0 B̂

0 −Â
∗ −Ĉ

Ĉ
∗

B̂
∗

D+D∗


 and Ê=W

∗
EV=




Ê

Ê
∗

0


 ,

Algorithm 3.7 Sorensen’s Algorithm [109]

INPUT: System (E,A,B,C,D),
OUTPUT: Reduced System (Ê, Â, B̂,Ĉ,D)
1: Compute A,E
2: [A1,E1,Z,Q,V,W ] = qz(A,E);
3: Find spectral zeros, Λ = eig(A,E);
4: Find the real basis for the right eigenvector matrix V ,

5: Find the positive real spectral zeros and corresponding eingenvectors, Λ1 = [ ]; V1 = [ ];
6: for i = 1 : length(Λ) do

7: if (real(Λ(i))> 0 and Λ(i) are chosen spectral zeros) or imagΛ(i) = 0 then

8: Λ1 = [Λ1 Λ(i)]; V1 = [V1 V (:, i)];
9: end if

10: end for

11: X =V1(1 : n, :); Y =V1(n+1 : 2n, :);
12: [Qx,S

2,Qy] = svd(X∗Y );
13: Construct the projection matrices, V = XQxS−1; W = Y QyS−1;

14: Ê =W ∗EV ; Â =W ∗AV ; B̂ =W ∗B; Ĉ =CV ;

and 


Â 0 B̂

0 −Â
∗ −Ĉ

Ĉ
∗

B̂
∗

D+D∗






X̂

Ŷ

Ẑ


=




Ê

Ê
∗

0






X̂

Ŷ

Ẑ


R,

or 


Â 0 B̂

0 −Â
∗ −Ĉ

Ĉ
∗

B̂
∗

D+D∗






X̂

Ŷ

Ẑ


=




ÊX̂

Ê
∗
Ŷ

0


R.

where Â = W∗AV, Ê = W∗EV, B̂ = W∗B, and Ĉ = V∗C.

This shows that SĜ ⊆ SG and since SĜ = σ(R)∪σ(-R∗) 20and σ(R) is in the open

right half-plane, the reduced model has no spectral zeros on the imaginary axis.

20 We know if we have real matrix A and λ ∈ σ(A) then λ̄ ∈ σ(A). In Lemma 3.1 we showed that

if λ ∈ SG then −λ̄ ∈ SG. Therefore

λ , λ̄ , −λ and− λ̄ ∈ SG.

On the other hand, R is a selected invariant subspace of (A,E), which means that σ(R)⊂ SG. Now,

we need to find a basis for an invariant subspace with eigenvalues of R in open right half-plane. As

we mentioned above σ(R) and σ(−R∗) are a subset of SG. Thus take

SĜ = σ(R)∪σ(-R∗).
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The previous result is also valid when S is nonsingular. Now we consider the case

S is singular. Beginning with X,Y from (3.44) and with the SVD of X∗Y, where

QxS2Qy = X∗Y, specify a cut-off tolerance τc ∈ (0,1) and let j be the largest posi-

tive integer such that

σ j ≥ τcσ1 where σ j = S( j, j).

Define Q j = Qx(:,1 : j), S j = S(1:j,1:j) and then let (X j)
I = Q j(S j)

−1. Replace

X̂
−1

= (X j)
I , V = X(X j)

I and W =−Y(X j)
I . According to [109], in this way, the

reduced system is passive and also the stability of the reduced model is obtained if

Z is full rank.

Sorenson’s Algorithm is discribed in Alg. 3.7.

3.3.6 Model Reduction by Projection (Antoulas [95])

We want to reduce the original system ∑ to ∑̂ where the complexity k of ∑̂ is

(much) less than that of ∑ (k≪ n) [95]. This reduction must preserve both stability

and passivity and it must be numerically efficient. Antoulas’ Algorithm is described

in Alg. 3.8.

Algorithm 3.8 Antoulas’s Algorithm [95]

INPUT: System (E,A,B,C,D),
OUTPUT: Reduced System (Ê, Â, B̂,Ĉ,D)

Compute A,E
2: Find spectral zeros, Λ = eig(A,E);

ΛR = [ ]; ΛC = [ ];
4: while n≥ length(Λ) do

if Λ(n) is positive real, ΛR = [ΛR Λ(n)];
6: if Λ(n) is complex and in right half-plane, ΛC = [ΛC Λ(n)];

end while

8: for m = 1 : length(ΛC) do

if ΛC(m) chosen spectral zeros then

10: ΛR = [ΛR ΛC(m)];
end if

12: end for

V = [ ]; W = [ ];
14: for q = 1 : length(ΛR) do

v = (ΛR(q)E−A)−1B; w = (−ΛR(q)E∗−A∗)−1C∗;
16: V = [V v]; W = [W w];

end for

18: Make a real basis for V and W

W = (W ∗V )−1W ;

20: Ê =W ∗EV ; Â =W ∗AV ; B̂ =W ∗B; Ĉ =CV ;
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We will look for V,W ∈ R
n×k such that VW∗ is a projection with the additional

condition W∗V = Ik (recall that P is a projection matrix if P2 = P). So, if we have

V and W with W∗V = Ik, then indeed

(VW∗)2 = VW∗.

Given 2k distinct points s1, · · · ,s2k, let

Ṽ =
[
(s1In−A)−1B · · · (skIn−A)−1B

]
,

W̃ =
[
(sk+1In−A∗)−1C · · · (s2kIn−A∗)−1C

]
. (3.52)

Now take V = Ṽ and W = W̃(Ṽ
∗
W̃)−1. We define

Â = W∗AV, B̂ = W∗B, Ĉ = V∗C. (3.53)

Then we have the following theorem (Antoulas [95])

Proposition 3.1. Assuming that det(W̃∗Ṽ) 6= 0, the projected system ∑̂, defined by

(3.53), interpolates the transfer function of ∑ at the points si:

Ĝ(si) = G(si) i = 1,2, · · · ,2k.

where si are the spectral zeros.

3.3.7 Numerical results

In [107] several numerical results are presented for an RLC-circuit that is also

found in [95,109]. The transfer function is a scalar function G(s). The starting point

is to compute the spectral zeros (using a generalized eigenvalue method) and then to

try to categorize them related to their magnitude, like distance from the real and the

imaginary axis in order to have a good match in low or high frequency. The reduced

method was obtained by the algorithm Alg. 3.8 of Antoulas. A large distance from

the real axis results in a good approximation at high frequencies. A large distance

from the imaginary axis results in a good approximation at low frequencies. In both

situations including the real spectral zeros plays an important role for having a good

reduced model at low frequencies.

One should check if a spectral zero also occurs as a pole and as a zero, both, in

which case the factors (λ I−A) are singular. These spectra zeros should be left out

of the reduction.

In this section we study a circuit which has a descriptor matrix E 6= In. We consider

the circuit shown in Figure 3.16. We assume that all capacitors and inductors have a

unit value, R1 =
1
2
Ω , R2 =

1
5
Ω , R2k =

1
3
Ω , where k = 2,3, · · · ,n and R2k+1 =

1
4
Ω ,

where k = 1,2, · · · ,n.
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Fig. 3.16 RLC Circuit of Order 7.

Fig. 3.17 Spectral zeros of the original model (+), and spectral zeros of the reduced model (o).
For interpolation, the spectral zeros close to the real axis are chosen. All selected spectral zeros are

preserved after reduction. Order of original model is 1003 and it is reduced to 341.

Fig. 3.18 Effect of several real spectral zeros, Left: Frequency responses of the original system

and reduced model. The spectral zeros close to the real axis are interpolated. Right: Frequency

response of the error ‖Σ − Σ̂‖2.
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The order of the original system is 1003 and the selected spectral zeros close to

the real axis are shown in Figure 3.17. In this case, like before, the reduced model

has a good match at low and at high frequencies, as shown in Figure 3.18.

3.3.8 Conclusion

We have considered two approaches for passive and stable reduction of dynami-

cal systems in circuit simulation, based on the methods by Antoulas [95] and Soren-

son [109] that both exploit interpolating spectral zeros. The reduced models pre-

serve passivity and stability. The original system is reduced by projection matrices,

which are built via spectral zero interpolation. Different selections of spectral zeros

give us different approximations of the original model, which may/may not produce

acceptable reduction. We have considered criteria for selecting the spectral zeros

and also to approximate the original system well in low and high frequency. When

the spectral zeros are chosen close to the real axis, the reduced model matches the

orginal response well for low frequencies. On the other hand, when they are far from

the real axis, the reduced model is more accurate for high frequencies. As already

shown preserving the real spectral zero plays an important role for having a good

reduction in the whole frequency domain, specially in low frequency. It means that

one should try to save all the real spectral zeros of the system.

The approaches of Antoulas and Sorensen are equivalent but as Sorensen’s algo-

rithm works directly with eigenvalues and eigenvectors, it is more usable for con-

structing the projection matrices. For the same reason Sorensen’s approach is more

suitable for large scale systems.
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3.4 Passivity preserving model reduction using the dominant

spectral zero method

21The design of integrated circuits has become increasingly complex, thus elec-

tromagnetic couplings between components on a chip are no longer negligible. To

verify coupling effects, on-chip interconnections are modeled as RLC circuits and

simulated. As these circuits contain millions of electrical components, the underly-

ing dynamical systems have millions of internal variables and cannot be simulated

in full dimension. Model order reduction (MOR) aims at approximating the math-

ematical description of a large scale circuit with a model of smaller dimension,

which replaces the original model during verification and speeds up simulation. The

reduction method should preserve important properties of the original model (i.e.,

stability, passivity) and have an efficient, robust implementation, suitable for large-

scale applications. RLC circuits describing the interconnect are passive systems,

with positive real transfer functions [112, 115], thus reduced models should also be

passive. A passive reduced model can be synthesized back into an RLC circuit [112],

which is placed instead of the original in the simulation flow. Passive reduced cir-

cuits also guarantee stable simulations when integrated with the overall nonlinear

macro-model [116, 127, 133] during later simulation stages.

The proposed cDominant Spectral Zero Method (dominant SZM) is a model re-

duction method which preserves passivity and stability, and is efficiently imple-

mented using the subspace accelerated dominant pole algorithm (SADPA) [129,

21 Section 3.4 has been written by: Roxana Ionutiu, Joost Rommes and Athanasios C. Antoulas.

For an extended treatment on the topics of this Section see also the Ph.D. Thesis of the first author

[122].
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131]. Passivity preservation is ensured via a new approach, that of interpolation at

dominant spectral zeros, a subset of spectral zeros of the original model. Dominant

SZM reduces automatically all passive systems, including those with formulations

unsuitable for PRIMA (first order susceptance-based models for inductive couplings

(RCS circuits) [139] or models involving controlled sources, such as vector poten-

tial equivalent circuit (VPEC) [138] and partial element equivalent circuit (PEEC)

models [135]). In comparison to positive real balanced truncation (PRBT) [128],

dominant SZM efficiently handles systems with a possibly singular E matrix [see

(3.54)]. Unlike modal approximation (MA) [129,134] where interpolation is at dom-

inant poles, our method matches the dominant spectral zeros of the original system,

guaranteeing passivity.

The remainder of this Section is structured as follows. The introduction contin-

ues with the mathematical setup of MOR in Sect. 3.4.1, and with a brief description

of MOR via spectral zero interpolation in Sect. 3.4.2. Dominant SZM is presented

concisely in Sect. 3.4.3.1 (following [120]). It is extended with the concept of dom-

inance at ∞ (Sect. 3.4.3.2), and with an approach for converting the reduced models

to circuit representations (Sect. 3.4.3.3). Numerical results follow in Sect. 3.4.4 and

the Section concludes with Sect. 3.4.5. Algorithmic pseudocode for the dominant

SZM - SADPA implementation is given in the Appendix 3.4.6.

3.4.1 Background on MOR

The model reduction framework involves approximation of an original dynami-

cal system described by a set of differential algebraic equations in the form:

Eẋ(t)=Ax(t)+Bu(t), y(t)=Cx(t)+Du(t), (3.54)

where the entries of x(t) are the system’s internal variables, u(t) is the system input

and y(t) is the system output, with dimensions x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p.

Correspondingly, E ∈ R
n×n, A ∈ R

n×n, (A,E) is a regular pencil, B ∈ R
n×m, C ∈

R
p×n, D∈R

p×m. The original system Σ(E,A,B,C,D) is stable and passive and has

dimension n, usually very large. We seek a reduced order model Σ̂(Ê, Â, B̂, Ĉ,D),
which satisfies: Ê ˙̂x(t) = Âx̂(t)+ B̂u(t), ŷ(t) = Ĉx̂(t)+Du(t), where x̂ ∈ R

k, Ê ∈
R

k×k, Â ∈ R
k×k, B̂ ∈ R

k×m, Ĉ ∈ R
p×k, D ∈ R

p×m. Σ̂ is obtained by projecting

the internal variables of the original system x onto a subspace ColSpan V ⊂ R
n×k,

along Null W∗ ⊂ R
k×n. The goal is to construct V and W, such that Σ̂ is stable

and passive. Additionally, V and W should be computed efficiently. The reduced

matrices are obtained as follows:

Ê = W∗EV, Â = W∗AV, B̂ = W∗B, Ĉ = CV. (3.55)
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3.4.2 MOR by spectral zero interpolation

We revise the spectral zero interpolation approach for model reduction as pro-

posed in [113, 132]. The ingredient for passivity preservation are the spectral zeros

of Σ(E,A,B,C,D), defined as follows:

Definition 3.5. For system Σ with transfer function: H(s) := C(sE−A)−1B+D,

the spectral zeros are all s ∈ C such that H(s) + H∗(−s) = 0, where H∗(−s) =
B∗(−sE∗−A∗)−1C∗+D∗.

According to [113,132], model reduction via spectral zero interpolation involves

forming rational Krylov subspaces:

V=[(s1E−A)−1B, · · · , (skE−A)−1B], W=[(−s∗1E∗−A∗)−1C∗, · · · , (−s∗kE∗−A∗)−1C∗],(3.56)

where s1 . . .sk,−s∗1 . . .− s∗k are a subset of the spectral zeros of Σ . By projecting the

original system with matrices (3.56) according to (3.55), the reduced Σ̂ interpolates

Σ at the chosen si and their mirror images −s∗i , i = 1, . . . ,k [112, 113]. Projection

matrices V and W insure that the reduced system satisfies the positive real lemma

[112, 113, 115, 132], thus passivity is preserved. If in the original system D 6= 0,

the reduced system is strictly passive, and realizable with RLC circuit elements. In

Sect. 3.4.3.2 we show one way of obtaining strictly passive reduced systems also

when D = 0.

3.4.3 The Dominant Spectral Zero Method

The new Dominant Spectral Zero Method (dominant SZM) is presented. The

spectral zero method [113,132] is extended with a dominance criterion for selecting

finite spectral zeros. These are computed efficiently and automatically using the

subspace accelerated dominant pole algorithm (SADPA) [129, 131]. We show in

addition how, for certain RLC models, dominant spectral zeros at ∞ can also be

easily interpolated.

3.4.3.1 Dominant spectral zeros and implementation

In [132] it was shown that spectral zeros are solved efficiently from an asso-

ciated Hamiltonian eigenvalue problem [126, 136]. In [113, 132] however, the se-

lection of spectral zeros was still an open problem. We propose a solution as fol-

lows: we extend the concept of dominance from poles [131] to spectral zeros, and

adapt the iterative solver SADPA for the computation of dominant spectral zeros.

The corresponding invariant subspaces are obtained as a by-product of SADPA, and

are used to construct the passivity preserving projection matrices V and W. Essen-

tially, dominant SZM is the SADPA-based implementation of modal approximation
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for the Hamiltonian system associated with G(s) = [H(s)+H∗(−s)]−1. Recalling

Def. 3.5, the spectral zeros of Σ are the poles of G(s), with partial fraction ex-

pansion: G(s) = ∑
2n
j=1

R j

s−s j
, where si are the poles of G with associated residues

R j [125, 129]. The modal approximate of G(s) is obtained by truncating this sum:

Ĝ(s) = ∑
2k
j=1

R j

s−s j
. The procedure is outlined next.

1. Given Σ(E,A,B,C,D), construct the associated Hamiltonian system Σs, associ-

ated with transfer function G(s):

a. Σs when D+D∗ is invertible:

As =




A 0 B

0 −A∗ −C∗

C B∗ D+D∗


 ,Es=




E 0 0

0 E∗ 0

0 0 0


 ,Bs=




B

−C∗

0


∆ ,

Cs =−∆
(
C B∗ 0

)
, Ds=∆ =(D+D∗)−1 (3.57)

b. Σs when D = 0:

As=




A 0 B

0 −A∗ −C∗

C B∗ 0


 , Es=




E 0 0

0 E∗ 0

0 0 0


 , Bs=




B

−C∗

I


 , Cs=−

(
C B∗ I

)
(3.58)

2. Solve the Hamiltonian eigenvalue problem (Λ ,R,L) = eig(As,Es), i.e., AsR=
EsRΛ , L∗As =ΛL∗Es. R = [r1, . . . ,r2n], L = [l1, . . . , l2n] and eigenvalues Λ =
diag(s1, . . . ,sn,−s∗1, . . . ,−s∗n) are the spectral zeros of Σ .

3. Compute residues R j associated with the stable22 spectral zeros s j, j = 1 . . .n as

follows: R j =γ jβ j, γ j =Csr j(l
∗
jEsr j)

−1, β j = l∗jBs.

4. Sort spectral zeros descendingly according to dominance criterion
‖R j‖
|Re(s j)| [131,

Chapter 3], and reorder right eigenvectors R accordingly.

5. Retain the right eigenspace R̂= [r1, . . . , rk]∈C
2n×k, corresponding to the stable

k most dominant spectral zeros.

6. Construct passivity projection matrices V and W from the rows of R̂: V =
R̂[1:n,1:k], W= R̂[n+1:2n,1:k], and reduce Σ according to (3.55).

As explained in [113, 120, 132], by projecting with (3.55), Σ̂ interpolates the k

most dominant spectral zeros of Σ , guaranteeing passivity and stability. For large-

scale applications, a full solution to the eigenvalue problem in step 2, followed by

the dominant sort 3–4 is computationally unfeasible. Instead, the iterative solver

SADPA [131, Chapter 3] is applied with appropriate adaptations for spectral zero

computation (see Appendix 3.4.6 for the pseudocode). SADPA implements steps 2–

4 efficiently and automatically gives the k most dominant spectral zeros and associ-

ated 2n×k right eigenspace R̂. The implementation requires performing an LU fac-

torization of (s jE−A) at each iteration. The relevant s j are nevertheless computed

22 s ∈C is stable if Re(s)< 0.
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automatically in SADPA, which may have several advantages over other methods

(see [120] for a more detailed cost analysis).

3.4.3.2 D = 0 and dominance at s→ ∞

Systems arising in circuit simulation often satisfy D= 0 in (3.54). In this case, the

projection (3.55), with W and V obtained in step 6 in Sect. 3.4.3.1, gives a lossless

system [120]. This is because W and V only interpolate dominant finite spectral

zeros, whereas the original system has spectral zeros at ∞, some of which may be

dominant [119]. A strictly passive system (with all poles in the left half plane) can

nevertheless be obtained by recovering this dominant behavior. For systems often

occurring in circuit simulation this is achieved as follows. Consider the modified

nodal analysis (MNA) description of an RLC circuit:



0 0 0

0 C 0

0 0 L




︸ ︷︷ ︸
E

d

dt




vp

vi

iL




︸ ︷︷ ︸
ẋ

+




G11 G12 E1

G ∗12 G22 E2

−E ∗1 −E ∗2 0




︸ ︷︷ ︸
−A




vp

vi

iL




︸ ︷︷ ︸
x

=




B1

0

0




︸ ︷︷ ︸
B

u, (3.59)

where u(t)∈R
m are input currents and y(t) =Cx∈R

m are output voltages, C=B∗.
The states are x(t) = [vp(t), vi(t), iL(t)]

T , with vp(t) ∈ R
np the voltages at the

input nodes (circuit terminals), vi(t) ∈ R
ni the voltages at the internal nodes, and

iL(t) ∈ R
niL the currents through the inductors, np +ni +niL = n. C and L are the

capacitor and inductor matrix stamps, respectively. With (3.59) it is assumed that no

capacitors or inductors are directly connected to the input nodes, thus B ∈ Null(E)
and C∗ ∈ Null(E∗). As B and C are right and left eigenvectors corresponding to

dominant poles (and spectral zeros) at ∞ [119], the modified projection matrices

are:

W̃ = [W,C∗], Ṽ = [W,B], (3.60)

where W and V are obtained from step 6 in Sect. 3.4.3.1. With (3.60), the finite

dominant spectral zeros are interpolated as well as the dominant spectral zeros at

∞, and the reduced system is strictly passive [119]. In [120] two alternatives were

proposed for ensuring strict passivity for systems in the more general form (3.54)

with D = 0.

3.4.3.3 Circuit representation of reduced impedance transfer function

Reduced models obtained with dominant SZM and other Krylov-type methods

(PRIMA [127], SPRIM [116,117], SPRIM/IOPOR [114,137]) are mathematical ab-

stractions of an underlying small RLC circuit. Circuit simulators however can only

handle mathematical representations to a limited extent, and reduced models have to

be synthesized with RLC circuit elements. We reduce all circuits with respect to the
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input impedance transfer function (i.e., the inputs are the currents injected into the

circuit terminals and the outputs are the voltages measured at the terminals) [123].

After converting the reduced input impedance transfer function to netlist format, the

reduced circuit can be driven easily by currents or voltages when simulated. Thus

both the input impedance and admittance of an original model can be reproduced

(see Sect. 3.4.4). Here, models obtained with dominant SZM are converted to netlist

representations using the Foster impedance realization approach [118, 121]. Netlist

formats for the SPRIM/IOPOR [114, 116, 137] reduced models are obtained via the

RLCSYN unstamping procedure in [123, 137]. With both approaches, the result-

ing netlists may still contain circuit elements with negative values, nevertheless this

does not impede the circuit simulation. Obtaining realistic synthesized models with

positive circuit elements only is still an open problem.

3.4.4 Numerical results

Two transmission line models are reduced with the proposed dominant spec-

tral zero method and compared with the input-output structure preserving method

SPRIM/IOPOR [114,116,137]. For both circuits, the circuit simulators23 yield sys-

tems in the form (3.59), thus the dominant SZM projection is (3.60). RLC netlist

representations for the reduced models are obtained (see Sect. 3.4.3.3) and simu-

lated with Pstar.

The RLC transmission line with connected voltage controlled current sources

(VCCSs) from [120] is reduced with dominant SZM, SPRIM/IOPOR [116, 137]

and modal approximation (MA). The transfer function is an input impedance i.e., the

circuit is current driven. Matlab simulations of the original and reduced models, as

well as the Pstar netlist simulations are shown in Fig. 3.19: the model reduced with

Dominant SZM gives the best approximation. Table 3.2 summarizes the reduction:

the number of circuit elements and the number of states were reduced significantly

and the simulation time was sped up.

Table 3.2 Transmission line with VCCSs: reduction and synthesis summary

System Dimension R C L VCCs States Simulation time

Original 1501 1001 500 500 500 1500 0.5 s

Dominant SZM 2 3 2 0 - 4 0.01 s

SPRIM/IOPOR 2 6 3 1 - 4 0.01 s

In [120], the voltage driven input admittance of an RLC transmission line (con-

sisting of cascaded RLC blocks) was reduced directly as shown in Fig. 3.21. Here

we reduce and synthesize the underlying input impedance of the same transmis-

23 Pstar and Hstar are in-house simulators at NXP Semiconductors
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Fig. 3.19 Original, reduced and synthesized systems: Dominant SZM, SPRIM/IOPOR

sion line (see Figures 3.20 and 3.22). When driving the reduced netlist by an input

voltage during the actual circuit simulation, the same input admittance is obtained

as if the input admittance had been reduced directly, as seen in Figures 3.21 and

3.23. Table 3.3 summarizes the reduction results. Although the reduced mathemat-

ical models have the same dimension (k = 23), the reduction effect can only be

determined after obtaining the netlist representations. Although the SPRIM/IOPOR

synthesized model has fewer states, it has more circuit elements than the dominant

SZM model, i.e., the matrix stamp of the model is more dense. This suggests that

simulation time is jointly determined by the number of states and the number of cir-

cuit elements. Thus for practical purposes it is critical to synthesize reduced models

with RLC components.

Table 3.3 RLC transmission line: Input impedance reduction and synthesis summary

System Dimension R C L States Simulation time

Original 901 500 300 300 901 1.5 s

Dominant SZM 23 22 11 10 34 0.02 s

SPRIM/IOPOR 23 78 66 6 18 0.02 s

3.4.5 Concluding remarks

A novel passivity preserving model reduction method is presented, which is

based on interpolation of dominant spectral zeros. Implemented with the SADPA

eigenvalue solver, the method computes the partial eigenvalue decomposition of an

associated Hamiltonian matrix pair, and constructs the passivity preserving projec-

tion. Netlist equivalents for the reduced models are simulated and directions for

future work are revealed. Especially in model reduction of multi-terminal circuits,

achieving structure preservation, sparsity and small dimensionality simultaneously

is an open question. New developments on sparsity-preserving model reduction for

multi-terminal RC circuits can be found in [124]. In this context, RLC synthesis

with positive circuit elements will also be addressed.
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Fig. 3.20 Input impedance transfer function:

original and reduced with Dominant SZM
Fig. 3.21 Input admittance transfer function:

original, synthesized Dominant SZM model

Fig. 3.22 Input impedance transfer function:

original, reduced with SPRIM/IOPOR

Fig. 3.23 Input admittance transfer function:

original, synthesized SPRIM/IOPOR model

3.4.6 Appendix: SADPA for computing dominant spectral zeros

We outline SADPA for SISO systems; the MIMO implementation is similar and

the code for computing dominant poles can be found in [130] or online [131]. The

following pseudocode is extracted from [131, Chapter 3] and [129], with efficient

modifications to automatically account for the four-fold symmetry (λ ,−λ∗,λ∗,−λ )

of spectral zeros. In particular, as soon as a Hamiltonian eigenvalue (spectral zero)

λ has converged, we immediately deflate the right/left eigenvectors corresponding

to −λ∗ as well. It turns out that the right/left eigenvectors corresponding to −λ∗

need not be solved for explicitly. Rather, due to the structure of the Hamiltonian

matrices [136], [126], they can be written down directly from the already converged

left/right eigenvectors for λ , as shown in steps 3.9-3.9 of Algorithm 3.9. As for

modal approximation [129], [131, Chapter 3] deflation for λ ∗ and −λ is automat-

ically handled in Algorithm 3.11. To summarize, once the right/left eigenvectors

corresponding to an eigenvalue λ have converged, the right/left eigenvectors cor-

responding to−λ∗,λ∗,−λ are also readily available at no additional computational

cost, and can be immediately deflated.
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In Algorithm 3.10, the MATLAB qz routine is proposed for solving the small,

projected eigenvalue problem in step 3.10. This reveals the right/left eigenvectors

X̃, Ṽ of the projected pencil directly, however they are neither orthogonal nor bi-

G-orthogonal. Thus the normalization in step 3.10 is needed when computing the

residues.

A modified Gram-Schimdt procedure (MGS) is used for orthonormalization. We

used the implementation in [131, Algorithm 1.4]. For complete mathematical and

algorithmic details of SADPA we refer to [131, Chapter 3] and [129].

Algorithm 3.9 (Λ ,R,L) =SADPA(Eh,Ah,Bh,Ch,s1, ... pmax,kmin,kmax)

INPUT: (Eh,Ah,Bh,Ch), Eh ∈C2n×2n
, Ah ∈C2n×2n

, Bh ∈C2n×1
, Ch ∈C1×2n

an initial pole es-

timate s1 and number of desired poles pmax (in the restarted version, kmin and kmax are also

specified)

OUTPUT: Λ , the pmax most dominant eigenvalues and associated right, left eigenspaces R, L of

(Ah,Eh)
1: k = 1, p f ound = 0, Λ = [], R = [], L = []
2: while p f ound < pmax do

3: Solve for x from (skEh−Ah)x = Bh

4: Solve for v from (skEh−Ah)
∗v = C∗h

5: x =MGS(X,x), X = [X,x/‖x‖]
6: v =MGS(V,v), V = [V,v/‖v‖]
7: Compute G = V∗EhX and T = V∗AhX

8: (Λ̃ , X̃, Ṽ) = DomSort(T,G,X,V,Bh,Ch) {⊲ Algorithm 3.10}

9: Compute dominant approximate eigentriplet (λ̂1, x̂1, v̂1):

λ̂1 = λ̃1, x̂1 = (Xx̃1)/‖Xx̃1‖, v̂1 = (Vṽ1)/‖Vṽ1‖

10: if ‖Ahx̂1−Ehx̂1λ̂1‖< ε then

11: (Λ ,R,L,X,V,Bh,Ch) = Deflate(λ̂1, x̂1, v̂1,Λ ,R,L,XX̃(:,2:k),VṼ(:,2:k),Eh,Bh,Ch)
12: {⊲ Algorithm 3.11}

13: p f ound ++ {⊲ Also find eigenvectors for the antistable spectral zero −λ̂∗1 and deflate}

14: x=[ −v̂1(n+1:2n,:)
; v̂1(1:n,:)

]

15: v=[ x̂1(n+1:2n,:)
; −x̂1(1:n,:)

]

16: (Λ ,R,L,X,V,Bh,Ch) = Deflate(−λ̂∗1,x,v,Λ ,R,L,X,V,Eh,Bh,Ch) {⊲ Algorithm 3.11}

17: p f ound ++

18: λ̃1 = λ̃2

19: else if ncols(X̃)> kmax then

20: {⊲ Possible restart}

21: {⊲ Retain first kmin most dominant approximate eigenvectors and re-orthonormalize}
22: X =MGS(XX̃(:,1:kmin)) {⊲ Orthornormalize all columns sequentially}

23: V =MGS(VṼ(:,1:kmin))

24: end if

25: Increment k = k+1

26: Select new most dominant pole estimate sk = λ̃1

27: end while
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Algorithm 3.10 (Λ̃ , X̃, Ṽ) = DomSort(T,G,X,V,Bh,Ch)

INPUT: (T,G),X,V,Bh,Ch

OUTPUT: (Λ̃ , X̃, Ṽ), k dominant approximate eigenvalues and associated right, left eigenvectors

of (T,G), sorted such that λ̃1 is most dominant

1: (AA,BB,Q,Z, X̃, Ṽ) = QZ(T,G)
2: Λ̃ = diag(AA)./diag(BB) and |λ̃i| 6= ∞, i = 1 . . .k

3: Ri =
[Ch x̃i][ṽ

∗
i Bh]

ṽ∗i Gx̃i
{⊲ Compute residues}

4: Sort (Λ̃ , X̃, Ṽ) in decreasing |Ri|/|Re(λ̃i)| order

Algorithm 3.11 (Λ ,R,L,X,V,Bh,Ch) = Deflate(λ̂ , x̂, v̂, ... Λ ,R,L, X̂, V̂,Eh,Bh,Ch)

INPUT: (λ̂ , x̂, v̂): the newly converged most dominant eigentriplet, (Λ ,R,L): the dominant eigen-

triplets already found correctly, X̂, V̂: the approximate right/left eigenvectors not yet checked

for convergence, Eh,Bh,Ch

OUTPUT: (Λ ,R,L): updated converged eigentriplets, X,V: deflated approximate eigenspaces,

Bh,Ch: deflated matrices

1: Λ = [Λ , λ̂ ]
2: r̂ = x̂/(v̂∗Ehx̂) {⊲ For keeping converged eigenvectors bi-E-orthogonal}

3: l̂ = v̂

4: R = [R, r̂], L = [L, l̂]
5: Deflate Bh = Bh−Ehr̂(l̂∗Bh)
6: Deflate Ch = Ch− (Chr̂)l̂∗Eh

7: if imag(λ̂ 6= 0) then

8: {⊲ Also deflate complex conjugate}

9: Λ = [Λ , λ̂∗]
10: r̂ = r̂∗, l̂ = l̂∗

11: R = [R, r̂], L = [L, l̂]
12: Deflate Bh = Bh−Ehr̂(l̂∗Bh)
13: Deflate Ch = Ch− (Chr̂)l̂∗Eh

14: end if

15: X = Y = []
16: for j = 1 . . .#cols(X̂) do

17: X = Expand(X,R,L,Eh, x̂ j) {⊲ Algorithm 3.12}
18: V = Expand(V,R,L,E∗h, v̂ j) {⊲ Algorithm 3.12}
19: end for

Algorithm 3.12 X =Expand(X,R,L,Eh, x̂)

INPUT: X ∈C2n×k
such that XX∗=I, (R,L) ∈C2n×p

: the correctly found right/left eigenvectors

such that: L∗EhR is diagonal and L∗EhX=0, x̂: approximate eigenvector not yet checked for

convergence, Eh

OUTPUT: X ∈C2n×(k+1)
expanded such that XX∗=I

1: xk+1=∏
p
j=1

(
I− r j l

∗
j Eh

l∗j Ehr j

)
x̂

2: x = MGS(X,xk+1)
3: X = [X,x/‖x‖]
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3.5 A framework for synthesis of reduced order models

24The main motivation for this Section comes from the need for a general frame-

work for the (re)use of reduced order models in circuit simulation. Although many

model order reduction methods have been developed and evolved since the 1990s

(see for instance [140,145] for an overview), it is usually less clear how to use these

methods efficiently in industrial practice, e.g., in a circuit simulator. One reason

can be that the reduced order model does not satisfy certain physical properties, for

instance, it may not be stable or passive while the original system is. Failing to pre-

serve these properties is typically inherent to the reduced order method used (or its

implementation). Passivity (and stability implicitly) can nowadays be preserved via

several methods [141, 150, 155, 165, 167, 172, 173], but none address the practical

aspect of (re)using the reduced order models with circuit simulation software (e.g.,

SPICE [149]). While the original system is available in netlist format, the reduced

order model is in general only available in numerical format. Typically, circuit simu-

lators are not prepared for inputs of this form and would require additional software

architecture to handle them. In contrast, a reduced model in netlist representation

could be easily coupled to bigger systems and simulated.

Synthesis is the realization step needed to map the reduced order model into a

netlist consisting of electrical circuit components [153]. In [147] it was shown that

passive systems (with positive real transfer functions) can be synthesized with pos-

itive R,L,C elements and transformers. Later developments [146] propose a method

to circumvent the introduction of transformers, however the resulting realization is

non-minimal (i.e., the number of electrical components generated during synthesis

is too large). Allowing for possibly negative R,L,C values, other methods have been

proposed via e.g. direct stamping [162, 165] or full realization [154, 166]. These

mostly model the input/output connections of the reduced model with controlled

sources.

24 Section 3.5 has been written by: Roxana Iountiu and Joost Rommes. For an extended treatment

on the topics of this Section see also the Ph.D. Thesis of the first author [157] and to [158].



84 Chapter 3 Authorgroup

In this Section we consider two synthesis methods that do not involve controlled

sources: (1) Foster synthesis [153], where the realization is done via the system’s

transfer function and (2) RLCYSN synthesis by unstamping [175], which exploits

input-output structure preservation in the reduced system matrices [provided that the

original system matrices are written in modified nodal analysis (MNA) representa-

tion]. The focus of this Section is on structure preservation and RLCSYN, especially

because synthesis by unstamping is simple to implement for both SISO and MIMO

systems. Strengthening the result of [175], we give a simple procedure to reduce

either current- or voltage-driven circuits directly in impedance form by removing

all the sources. Such an impedance-based reduction enables synthesis without con-

trolled sources. The reduced order model is available as a netlist, making it suitable

for simulation and reuse in other designs. Similar software [148] is commercially

available.

The material in this Section is organized as follows. A brief mathematical for-

mulation of model order reduction is given in Sect. 3.5.1. The Foster synthesis is

presented in Sect. 3.5.2. In Sect. 3.5.3 we focus on reduction and synthesis with

structure (and input/output) preservation. Sect. 3.5.3.1 describes the procedure to

convert admittance models to impedance form, so that synthesized models are easily

(re)used in simulation. Based on [175], Sect. 3.5.3.2 is an outline of SPRIM/IOPOR

reduction and RLCSYN synthesis. Examples follow in Sect. 3.5.4, and Sect. 3.5.5

concludes.

3.5.1 Problem formulation

In this Section the dynamical systems Σ(A,E,B,C,D) are of the form Eẋ(t) =
Ax(t)+Bu(t), y(t) = Cx(t)+Du(t), where A,E∈R

n×n, E may be singular but the

pencil (A,E) is regular, B ∈R
n×m, C ∈R

p×n, x(t) ∈R
n, and u(t) ∈R

m, y(t) ∈R
p,

D∈R
p×m. If m, p > 1, the system is called multiple-input multiple-output (MIMO),

otherwise it is called single-input single-output (SISO). The frequency domain

transfer function is defined as: H(s) = C(sE−A)−1B+D. For systems in MNA

form arising in circuit simulation see Sect. 3.5.3.

The model order reduction problem is to find, given an n-th order (descriptor)

dynamical system, a k-th order system: Ẽ ˙̃x(t)= Ãx̃(t)+B̃u(t), ỹ(t)= C̃x̃(t)+Du(t)

where k< n, and Ẽ, Ã∈R
k×k, B̃∈R

k×m, C̃∈R
p×k, x̃(t)∈R

k, u(t)∈R
m, ỹ(t)∈R

p,

and D ∈ R
p×m. The number of inputs and outputs is the same as for the original

system, and the corresponding transfer function becomes: H̃(s) = C̃(sẼ− Ã)−1B̃+
D. For an overview of model order reduction methods, see [140, 143, 145, 171].

Projection based model order reduction methods construct a reduced order model

via Petrov-Galerkin projection:

Σ̃(Ẽ, Ã, B̃, C̃,D)≡ (W∗EV,W∗AV,W∗B,V∗C,D), (3.61)
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where V,W ∈ R
n×k are matrices whose k < n columns form bases for relevant sub-

spaces of the state-space. There are several projection methods, that differ in the

way the matrices V and W are chosen. These also determine which properties are

preserved after reduction. Some stability preserving methods are: modal approxi-

mation [170], Poor Man’s TBR [168]. Among moment matching [151] methods, the

following preserve passivity: PRIMA [165], SPRIM [150], spectral zero interpola-

tion, [141, 155, 159, 172]. From the balancing methods, balanced truncation [144]

preserves stability, and positive real balanced truncation [167, 173] preserves pas-

sivity.

3.5.2 Foster synthesis of rational transfer functions

This section describes the Foster synthesis method, which was developed in

the 1930s by Foster and Cauer [153] and involves realization based on the sys-

tem’s transfer function. The Foster approach can be used to realize any reduced

order model that is computed by standard projection based model order reduc-

tion techniques. Realizations will be described in terms of SISO impedances (Z-

parameters). For equivalent realizations in terms of admittances (Y -parameters), see

for instance [153,174]. Given the reduced system (3.61) consider the partial fraction

expansion [161] of its transfer function:

H̃(s) =
k

∑
i=1

r̃i

s− p̃i

+D, (3.62)

The residues are r̃i =
(C̃x̃i)(ỹ

∗
i B̃)

ỹ∗i Ẽx̃i
and the poles are p̃i. An eigentriplet ( p̃i, x̃i, ỹi) is

composed of an eigenvalue p̃i of (Ã, Ẽ) and the corresponding right and left eigen-

vectors x̃i, ỹi ∈ C
k. The expansion (3.62) consists of basic summands of the form:

Z(s) = r1+
r2

s− p2
+

r3

s
+

(
r4

s− p4
+

r̄4

s− p̄4

)
+sr6+

(
r7

s− p7
+

r7

s− p̄7

)
, (3.63)

where for completeness we can assume that any kind of poles may appear, i.e.,

either purely real, purely imaginary, in complex conjugate pairs, at ∞ or at 0 (see also

Table 3.4). The Foster realization converts each term in (3.63) into the corresponding

circuit block with R,L,C components, and connects these blocks in series in the final

netlist. This is shown in Fig. 3.24. Note that any reordering of the circuit blocks in

the realization of (3.63) in Fig. 3.24 still is a realization of (3.63). The values for the

circuit components in Fig. 3.24 are determined according to Table 3.4.

The realization in netlist form can be implemented in any language such as

SPICE [149], so that it can be reused and combined with other circuits as well.

The advantages of Foster synthesis are: (1) its straightforward implementation for

single-input-single-output (SISO) transfer functions, via either the impedance or the



86 Chapter 3 AuthorgroupChapter 3 Auth

Fig. 3.24 Realization of a general impedance transfer function as a series RLC circuit.

Table 3.4 Circuit element values for Fig. 3.24 for the Foster impedance realization of (3.63)

pole residue R(Ohm) C(F) L(H) G(Ohm−1)

p1 = ∞ r1 ∈ R r1

p2 ∈ R r2 ∈ R − r2
p2

1
r2

p3 = 0 r3 ∈ R
1
r3

p4 = σ + iω ∈ C r4 = α + iβ ∈ C a0
a1

L 1
a1

a3
1

a2
1b0−a0(a1b1−a0)

a1b1−a0

a2
1p5 ≡ p̄4 r5 ≡ r̄4

a0 =−2(ασ +βω), a1 = 2α , b0 = σ2 +ω2, b1 =−2σ

p6 = ∞ r6 ∈ R r6

p7 ∈ iR r7 ∈ R 1
r7

2r7
p7 p̄7p8 ≡ p̄7 r8 ≡ r̄7

admittance transfer function, (2) for purely RC or RL circuits, netlists obtained from

reduction via modal approximation [170] are guaranteed to have positive RC or

RL values respectively [156]. The main disadvantage is that for multi-input-multi-

output transfer functions, finding the Foster realization (see for instance [174]) is

cumbersome and may also give dense reduced netlists (i.e., all nodes are intercon-

nected). This is because the Foster synthesis of a k-dimensional reduced system with

p terminals, will generally yield O(p2k) circuit elements. A method based on parti-

tioning of an RLC circuit is found in [163]. The method produces a positive-valued,

passive and stable reduced RLC circuit.

3.5.3 Structure preservation and synthesis by unstamping

This section describes the second synthesis approach, which is based on un-

stamping the reduced matrix data into an RLC netlist and is denoted by RLC-

SYN [175]. It is suitable for obtaining netlist representations for models reduced via

methods that preserve the MNA structure and the circuit terminals, such as the input-

output structure preserving method SPRIM/IOPOR [175]. The strength of the result

in [175] is that the input/output connectivity is synthesized after reduction without

controlled sources, provided that the system is in impedance form (i.e., inputs are

currents injected into the circuit terminals, and outputs are voltages measured at the

terminals). Here, we interpret the input-output preservation as preserving the exter-
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nal nodes25 of the original model during reduction. This way the reduced netlist can

easily be coupled to other circuitry in place of the original netlist, and (re)using the

reduced model in simulation becomes straightforward. The main drawback is that,

when the reduced system matrices are dense and the number of terminals is large

[O(103)], the netlist obtained from RLCSYN will be dense. For a k dimensional

reduced network with p terminals, the RLCSYN synthesized netlist will generally

have O(p2k2) circuit elements. The density of the reduced netlist however is not

a result of the synthesis procedure, but a consequnece of the fact that the reduced

system matrices are dense. Developments for sparsity preserving model reduction

for multi-terminal circuits can be found in [160], where sparse netlists are obtained

by synthesizing sparse reduced models via RLCSYN.

First, we motivate reduction and synthesis in impedance form, and show how

it also applies for systems that are originally in admittance form. Then we explain

model reduction via SPRIM/IOPOR, followed by RLCSYN synthesis.

3.5.3.1 A simple admittance to impedance conversion

In [175] it was shown how SPRIM/IOPOR preserves the structure of the in-

put/output connectivity when the original model is in impedance form, allowing for

synthesis via RLCSYN without controlled sources. The emerging question is: How

to ensure synthesis without controlled sources, if the original model is in admittance

form (i.e., it is voltage driven)? We show that reduction and synthesis via the input

impedance transfer function is possible by removing any voltage sources from the

original circuit a priori and re-inserting them in the reduced netlist if needed.

To this end, consider the modified nodal analysis (MNA) description of an input

admittance26 type RLC circuit, driven by voltage sources:



C 0 0

0 0 0

0 0 L




︸ ︷︷ ︸
EY

d

dt




v(t)
iS(t)
iL(t)




︸ ︷︷ ︸
ẋY

+




G Ev El

−Ev
∗ 0 0

−E∗l 0 0




︸ ︷︷ ︸
−AY




v(t)
iS(t)
iL(t)




︸ ︷︷ ︸
xY

=




0

B

0




︸ ︷︷ ︸
BY

u(t), (3.64)

where u(t) ∈ R
n1 are input voltages and y(t) = CY x(t) ∈ R

n1 are output currents,

CY = B∗Y . The states are xY (t) = [v(t), iS(t), iL(t)]
T , with v(t) ∈ R

nv the node volt-

ages, iS(t) ∈ R
n1 the currents through the voltage sources, and iL(t) ∈ R

nl the cur-

rents through the inductors, nv + n1 + nl = n. The nv = n1 + n2 node voltages cor-

respond to the n1 external nodes (i.e., the number of inputs/terminals) and the n2

internal nodes27. Assuming without loss of generality that (3.64) is permuted such

that the first n1 nodes are the external nodes, we have: v1:n1
(t) = u(t). The dimen-

25 A terminal (external node) is a node that is visible on the outside, i.e., a node in which currents

can be injected. The other nodes are called internal.
26 The subscript Y refers to quantities associated with a system in admittance form.
27 For the pencil (AY ,EY ) to be regular, in (3.64) one node must be chosen as a ground (reference)

node; this is however only a numerical requirement.
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sions of the underlying matrices are: C ∈ C
nv×nv , G ∈ C

nv×nv , Ev ∈ C
nv×n1 , L ∈

C
nl×nl , El ∈C

nv×nl , B ∈C
n1×n1 . Recalling that v1:n1

(t)= u(t), the following holds:

Ev =

(
Bv

0n2×n1

)
∈ C

nv×n1 , Bv ∈ C
n1×n1 , B =−Bv. (3.65)

We derive the first order impedance-type system associated with (3.64). Note that

by definition, iS(t) flows out of the circuit terminals into the voltage source (i.e.,

from the + to the − terminal of the voltage source, see also [165, Figure 3] [156]).

We can define new input currents as the currents flowing into the circuit terminals:

iin(t)=−iS(t). Since u(t) = v1:n1
(t) are the terminal voltages, they describe the new

output equations, and it is straightforward to rewrite (3.64) in the impedance form:





(
C 0

0 L

)

︸ ︷︷ ︸
E

d

dt

(
v(t)
iL(t)

)

︸ ︷︷ ︸
ẋ

+

(
G El

−El
∗ 0

)

︸ ︷︷ ︸
−A

(
v(t)
iL(t)

)

︸ ︷︷ ︸
x

=

(
Ev

0

)

︸ ︷︷ ︸
B

iin(t)

(
E∗v 0

)
︸ ︷︷ ︸

C

(
v(t)
iL(t)

)

︸ ︷︷ ︸
x

=y(t) = Bvv1:n1
(t), E∗v =

(
B∗

v 0n1×n2

) (3.66)

where B describes the new input incidence matrix corresponding the input currents,

iin. The new output incidence matrix is C, corresponding to the voltages at the circuit

terminals. We emphasize that (3.66) has fewer unknowns than (3.64), since the cur-

rents iS have been eliminated. The transfer function associated to (3.66) is an input

impedance: H(s) = y(s)
iin(s)

. In Sect. 3.5.3.2 we explain how to obtain an impedance

type reduced order model in input/output structure preserved form:





(
C̃ 0

0 L̃

)

︸ ︷︷ ︸
Ẽ

d

dt

(
ṽ(t)

ĩL(t)

)

︸ ︷︷ ︸
˙̃x

+

(
G̃ Ẽl

−Ẽ
∗
l 0

)

︸ ︷︷ ︸
−Ã

(
ṽ(t)

ĩL(t)

)

︸ ︷︷ ︸
x̃

=

(
Ẽv

0

)

︸ ︷︷ ︸
B̃

iin(t)

(
Ẽ∗v 0

)

︸ ︷︷ ︸
C̃

(
ṽ(t)

ĩL(t)

)

︸ ︷︷ ︸
x̃

=y(t) = Bvv1:n1
(t), Ẽ∗v =

(
B∗

v 0n1×k2

)
(3.67)

where C̃ , L̃ , G̃ , Ẽv are the reduced MNA matrices, and the reduced input impedance

transfer function is: H̃(s) = ỹ(s)
iin(s)

. Due to the input/output preservation, the circuit

terminals are easily preserved in the reduced model (3.67). The simple example in

Sect. 3.5.4.1 illustrates the procedure just described.

It turns out that after reduction and synthesis, the reduced model (3.67) can still

be used as a voltage driven admittance block in simulation. This is shown next. We

can rewrite the second equation in (3.67) as:
(
−Ẽ∗v 0 0

)(
ṽ(t)T ĩS(t)

T ĩL(t)
T
)T

=

Bu(t). This result together with iin(t)=−iS(t), reveals that (3.67) can be rewritten

as:
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


C̃ 0 0

0 0 0

0 0 L̃




︸ ︷︷ ︸
ẼY

d

dt




ṽ(t)
iS(t)

ĩL(t)




︸ ︷︷ ︸
˙̃xY

+




G̃ Ẽv Ẽl

−Ẽ∗v 0 0

−Ẽ∗l 0 0




︸ ︷︷ ︸
−ÃY




ṽ(t)
iS(t)

ĩL(t)




︸ ︷︷ ︸
x̃Y

=




0

B

0




︸ ︷︷ ︸
B̃Y

u(t), (3.68)

which has the same structure as the original admittance model (3.64). Conceptu-

ally one could have reduced system (3.64) directly via the input admittance. In

that case, synthesis by unstamping via RLCSYN [175] would have required con-

trolled sources [154] to model the connections at the circuit terminals. As shown

above, this is avoided by: applying the simple admittance-to-impedance conversion

(3.64) to (3.66), reducing (3.66) to (3.67), and finally reinserting voltage sources af-

ter synthesis [if the input-output strucutre preserved admittance reduced admittance

(3.68) is needed]. Being only a pre- and post-processing step, the proposed voltage-

source removal and re-insertion can be applied irrespective of the model reduction

algorithm used. For ease of understanding we relate it here to model reduction via

SPRIM/IOPOR.

3.5.3.2 I/O structure preserving reduction and RLCSYN synthesis

The reduced input impedance model (3.67) is obtained via the input-output struc-

ture preserving SPRIM/IOPOR projection [175] as follows. Let V=
(
VT

1 ,V
T
2 ,V

T
3

)T ∈
C
((n1+n2+nl)×k) be the projection matrix obtained with PRIMA [165], where V1 ∈

C
(n1×k), V2 ∈ C

(n2×k), V3 ∈ C
(nl×k), k ≥ n1, i = 1 . . .3. After appropriate or-

thonormalization (e.g., via Modified Gram-Schmidt [170, Chapter 1]), we obtain:

Ṽi = orth(Vi) ∈ C
ni×ki ,ki ≤ k. The SPRIM [150] block structure preserving pro-

jection is: Ṽ = blkdiag
(
Ṽ1, Ṽ2, Ṽ3

)
∈ C

n×(k1+k2+k3), which does not yet preserve

the structure of the input and output matrices. The input-output structure preserving

SPRIM/IOPOR [175] projection is W̃ =

(
W 0

0 Ṽ3

)
∈ C

n×(n1+k2+k3) where:

W =

(
In1×n1

0

0 Ṽ2

)
∈ C

(n1+n2)×(n1+k2). (3.69)

Recalling (3.65), we obtain the reduced system matrices in (3.67): C̃ =W∗C W,

G̃ = W∗G W, L̃ = Ṽ∗3L Ṽ3, Ẽl = W∗ElṼ3, Ẽv=W∗Ev =
(
B∗

v 0n1×k2

)∗
, which com-

pared to (3.65) clearly preserve input-output structure. Therefore a netlist represen-

tation for the reduced impedance-type model can be obtained, that is driven injected

currents just as the original circuit. This is done via the RLCSYN [175] unstamp-

ing procedure. To this end, we use the Laplace transform and convert (3.67) to the

second order form:

{
[sC̃ + G̃ + 1

s
Γ̃ ]ṽ(s)=Ẽviin(s)

ỹ(s)=Ẽ∗v ṽ(s),
(3.70)
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where ĩL(s) =
1
s
L̃−1

(
Ẽl

∗)
ṽ(s) and Γ̃ = ẼlL̃

−1Ẽ∗l .

The presentation of RLCSYN follows [175, Sect. 4], [156] and is only summa-

rized here. In circuit simulation, the process of forming the C ,G ,L system ma-

trices from the individual branch element values is called “stamping”. The reverse

operation of “unstamping” involves decomposing entry-wise the values of the re-

duced system matrices in (3.70) into the corresponding R, L, and C values. When

applied on reduced models, the unstamping procedure may produce negative circuit

elements because the reduced system matrices are no longer diagonally dominant

(while the original matrices were). Obtaining positive circuit elements only is sub-

ject to further research. The resulting Rs, Ls and Cs are connected in the reduced

netlist according to the MNA topology. The reduced input/output matrices of (3.70)

directly reveal the input connections in the reduced model via injected currents,

without any controlling elements. The prerequisites for an unstamping realization

procedure therefore are:

1. The original system is in MNA impedance form (3.66). If the system is of

admittance type (3.64), apply the admittance-to-impedance conversion from

Sect. 3.5.3.1.

2. In (3.66), no Ls are directly connected to the input terminals so that, after re-

duction, diagonalization and regularization preserve the input/output structure.

3. System (3.66) is reduced with SPRIM/IOPOR [175] to (3.67) and converted to

second order form (3.70). The alternative is to obtain the second order form of

the original system first, and reduce it directly with SAPOR/IOPOR [142, 175].

4. The reduced system (3.70) must be diagonalized and regularized according to

[175]. Diagonalization ensures that all inductors in the synthesized model are

connected to ground (i.e., there are no inductor loops). Regularization eliminates

spurious over-large inductors. These steps however are not needed for purely RC

circuits.

3.5.4 Numerical examples

We apply the proposed reduction and synthesis framework on several test cases.

The first is a simple circuit which illustrates the complete admittance-to-impedance

formulation and the RLCSYN unstampting procedure, as described in Sect. 3.5.3.

The second example is a SISO transmission line model, while the third is a MIMO

model of a spiral inductor.

3.5.4.1 Illustrative example

The circuit in Fig. 3.25 is voltage driven, and the MNA admittance form (3.64)
is:
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Fig. 3.25 Admittance-type circuit driven by input voltages [165]. G1,2,3 = 0.1S, L1 = 10−3H,

C1,2 = 10−6, Cc = 10−4, ‖u1,2‖= 1.




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 C1 +Cc −Cc 0 0 0

0 0 −Cc C2 +Cc 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 L




˙


v1

v4

v2

v3

iS1
iS2

iL



+




G1 0 −G1 0 1 0 0

0 G3 0 0 0 1 1

−G1 0 G1 +G2 −G2 0 0 0

0 0 −G2 G2 0 0 1

−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 1 0 −1 0 0 0







v1

v4

v2

v3

iS1
iS2

iL




=




0 0

0 0

0 0

0 0

−1 0

0 −1

0 0




(
u1

u2

)
(3.71)

Notice that

iin =

(
i1
i2

)
=−

(
iS1

iS2

)
(3.72)

u =

(
u1

u2

)
=

(
v1

v4

)
, (3.73)

thus the external nodes (input nodes/terminals) are v1 and v4, and the internal nodes
are v2 and v3. As described in Sect. 3.5.3.1, (3.71) has an equivalent impedance
formulation (3.66), with:

C =




0 0 0 0

0 0 0 0

0 0 C1+Cc −Cc

0 0 −Cc C2+Cc


 , L =

(
L
)
, G =




G1 0 −G1 0

0 G3 0 0

−G1 0 G1+G2 −G2

0 0 −G2 G2


 , El =




0

−1

0

1


 (3.74)

Ev =




1 0

0 1

0 0

0 0


 , B =

(
−1 0

0 −1

)
, Bv =−B (3.75)

Matrices (3.74), (3.75) are reduced either in first order form using SPRIM/IOPOR

according to Sect. 3.5.3.2.
Here we reduce the circuit with SPRIM/IOPOR and synthesize it by unstamping

via RLCSYN. Note that there is an L directly connected to the second input node v4,
thus assumption 2. from RLCSYN is not satisfied. We thus reduce and synthesize
the single-input-single-output version of (3.71) only, where the second input i2 is
removed. Therefore the new incidence matrices are:

Ev1
=




1

0

0

0


 ,B1 =

(
−1

)
, Bv1

=−B1. (3.76)
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We choose an underlying PRIMA projection matrix V ∈ C
n×k spanning a k = 2-

dimensional Krylov subspace (with expansion point s0 = 0). According to Sect. 3.5.3.2,

after splitting V and appropriate re-orthonormalization, the dimensions of the input-

output structure preserving partitioning are :

n1 = 1, n2 = 3, nl = 1, k2 = 2, k3 = 1, (3.77)

and the SPRIM/IOPOR projection is:

W̃ =




1 0 0 0

0 4.082 ·10−1 −4.861 ·10−1 0

0 8.164 ·10−1 5.729 ·10−1 0

0 4.082 ·10−1 −6.597 ·10−1 0

0 0 0 1


 ∈C5×4

, with W ∈C4×3
. (3.78)

After diagonalization and regularization, the SPRIM/IOPOR reduced system ma-
trices in (3.70) are:

C̃=




0 0 0

0 1.749 ·10−5 −5.052 ·10−5

0 −5.052 ·10−5 1.527 ·10−4


 , G̃ =




1 8.165 ·10−2 −5.729 ·10−2

8.165 ·10−2 9.999 ·10−2 −7.726 ·10−2

−5.7295 ·10−2 −7.7265 ·10−2 2.084 ·10−1




Γ̃=




0 0 0

0 0 0

0 0 30.14


 , Ẽv1

=




1

0

0


 (3.79)

Reduced matrices (3.79) are now unstamped individually using RLCSYN. The

reduced system dimension in second order form is thus N = 3, indicating that the

reduced netlist will have 3 nodes and an additional ground node. In the following,

we denote by Mi, j i = 1 . . .N, j = 0 . . .N−1 a circuit element connected between

nodes (i, j) in the resulting netlist. M represents a circuit element of the type: R,L,C

or current source J.
By unstamping G̃ , we obtain the following R values (for simplicity only 4 figures

behind the period are shown here, nevertheless in implementation they are computed

with machine precision ε = 10−16):

R1,0 =

[
3

∑
k=1

G̃(1,k)

]−1

=8.0417 Ω , R1,2 =−
[
G̃(1,2)

]−1

=−12.247 Ω , R1,3 =−
[
G̃(1,3)

]−1

= 17.452 Ω ,

R2,0 =

[
3

∑
k=1

G̃(2,k)

]−1

=9.5798 Ω , R2,3 =−
[
G̃(2,3)

]−1

=12.942 Ω , R3,0 =

[
3

∑
k=1

G̃(3,k)

]−1

=13.535 Ω .

By unstamping C̃ , we obtain the following C values:

C2,0 =
3

∑
k=1

C̃(2,k)=−3.3026 ·10−5 F, C2,3 =−C̃(2,3)=5.0526 ·10−5, F, C3,0 =

[
3

∑
k=1

C̃(3,k)

]−1

=1.0221 ·10−4 F.

By unstamping Γ̃ , we obtain the following L values:

L3,0 =

[
3

∑
k=1

Γ̃(3,k)

]−1

=3.317 ·10−2 H.
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By unstamping Ẽv1
, we obtain the current source J1,0 of amplitude 1 A.

The Pstar [164] equivalent netlist is shown below:.

circuit;

r r_1_0 (1, 0) 8.0417250765565598e+000;

r r_1_2 (1, 2) -1.2247448713915894e+001;

r r_1_3 (1, 3) 1.7452546181796258e+001;

r r_2_0 (2, 0) 9.5798755840972589e+000;

r r_2_3 (2, 3) 1.2942609947762115e+001;

r r_3_0 (3, 0) 1.3535652691596653e+001;

l l_3_0 (3, 0) 3.3170000000000033e-002;

c c_2_0 (2, 0) -3.3026513336014821e-005;

c c_2_3 (2, 3) 5.0526513336014765e-005;

c c_3_0 (3, 0) 1.0221180442099465e-004;

j j_1 (1, 0) sw(1, 0);

c: Set node 1 as output: vn(1);

c: Resistors 6;

c: Capacitors 3;

c: Inductors 1;

end;

Table 3.5 summarizes the reduction and synthesis results. Even though the num-

ber of internal variables (states) generated by the simulator is smaller for the

SPRIM/IOPOR model than for the original, the number of circuit elements gen-

erated by RLCSYN is larger in the reduced model than in the original. Fig. 3.26

shows that approximation with SPRIM/IOPOR is more accurate than with PRIMA.

The Pstar simulation of the RLCSYN synthesized model also matches the MATLAB

simulation of the reduced transfer function.

Table 3.5 Input impedance reduction (SPRIM/IOPOR) and synthesis (RLCSYN)

System Dimension R C L States Inputs/Outputs

Original 5 3 3 1 5 1

SPRIM/IOPOR 4 6 3 1 4 1

3.5.4.2 SISO RLC network

We reduce the SISO RLC transmission line in Fig. 3.27. Note that the circuit is

driven by the voltage u, thus it is of admittance type (3.64). The admittance sim-

ulation of the model reduced with the dominant spectral zero method (Dominant

SZM) [155, 159], synthesized with the Foster approach, is shown in Fig. 3.29. The

behavior of the original model is well approximated for the entire frequency range,

and can also reproduce oscillations at dominant frequency points.

In Fig. 3.30 the benefit of the admittance-to-impedance transformation, described

in Sect. 3.5.3.1, is seen. By reducing the system in impedance form with SPRIM/-

IOPOR and synthesizing (3.67) [using the second order form (3.70)] with RLC-
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Fig. 3.26 Original, reduced and synthesized systems: PRIMA, SPRIM/IOPOR. The reduced and

synthesized systems match but miss the peak around 4.5 rad/s.

Fig. 3.27 Transmission line from Sect. 3.5.4.2

Fig. 3.28 Coil structure from Sect. 3.5.4.3

Fig. 3.29 Input admittance transfer function:

original, reduced with Dominant SZM in ad-

mittance form and synthesized with Foster ad-

mittance.

Fig. 3.30 Input admittance transfer func-

tion: original and synthesized SPRIM/IOPOR

model (via impedance), after reconnecting the

voltage source at the input terminal.

SYN [175], we are able to recover the reduced admittance (3.68) as well. The ap-

proximation is good for the entire frequency range.



3 Model Order Reduction — Methods, Concepts and Properties 95

3.5.4.3 MIMO RLC network

We reduce the MIMO RLC netlist resulting from the parasitic extraction [152]

of the coil structure in Fig. 3.28. The model has 4 pins (external nodes). Pin 4 is

connected to other circuit nodes only via C’s, which causes the original model (3.66)

to have a pole at 0. The example shows that the SPRIM/IOPOR model preserves the

terminals and is synthesizable with RLCSYN without controlled sources.

Fig. 3.31, shows the simulation of the transfer function from input 4 to output

4. SPRIM/IOPOR is more accurate around DC than PRIMA. Another alternative is

to ground pin 4 prior to reduction. As seen from Fig. 3.32, SPRIM/IOPOR applied

on the remaining 3-terminal system gives better approximation than PRIMA for

the entire frequency range. With pin 4 grounded however, we loose the ability to

(re)connect the synthesized model in simulation via all the terminals.

Fig. 3.31 Input impedance transfer func-

tion with “v4” kept: H44 for PRIMA,

SPRIM/IOPOR and RLCSYN realization.

Fig. 3.32 Input impedance transfer func-

tion with “v4” grounded: H33 for PRIMA,

SPRIM/IOPOR and RLCSYN realization.

3.5.5 Conclusions and outlook

A framework for realizing reduced mathematical models into RLC netlists was

developed. Model reduction by projection for RLC circuits was described and asso-

ciated with two synthesis approaches: Foster realization (for SISO transfer func-

tions) and RLCSYN [175] synthesis by unstamping (for MIMO systems). An

admittance-to-impedance conversion was prosed as a pre-model reduction step

and shown to enable synthesis without controlled sources. The approaches were

tested on several examples. Future research will investigate reduction and synthesis

methods for RCLK circuits with many terminals, while developments on sparsity-

preserving model reduction for multi-terminal RC circuits can be found in [160].
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