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1 Introduction

A transfer function of a large dynamical system often only has a small number of dominant poles compared to the number of
state variables. Modal approximation techniques [1, 2, 3, 4] capture the dominant behavior of the system by projecting the
state-space on the modes corresponding to the dominant poles. The computation of the dominant poles and modes requires
specialized eigenvalue methods. In [5, 6, 7], algorithms were developed for the computation of dominant poles of single-input
single-output (SISO) and multi-input multi-output (MIMO) transfer functions of large scale dynamical systems.

In this paper an efficient algorithm, the Quadratic Dominant Pole Algorithm (QDPA), for the computation of dominant
poles of second-order transfer functions is described. Modal equivalents that are constructed by projecting the state-space
matrices on the dominant left and right eigenspaces, preserve the structure of the original system. The dominant poles and
modes can also be used to improve reduced-order models computed by rational Krylov based methods. For more details on
the Quadratic Dominant Pole Algorithm, see [8, 9].

2 Second-order dynamical systems, transfer functions, and dominant poles

In this paper, the second-order dynamical systems (M,C,K,b, c, d) are of the form{
M ẍ(t) + Cẋ(t) + Kx(t) = bu(t)
y(t) = c∗x(t) + du(t), (1)

where M,C,K ∈ Rn×n are the system matrices, b, c,x(t) ∈ Rn, u(t), y(t), d ∈ R. The vectors b and c are called the input
and output vector, respectively. The transfer function H : C −→ C of (1) is defined as H(s) = c∗(s2M + sC + K)−1b + d.
The poles of H(s) are a subset of the eigenvalues λi ∈ C of the quadratic eigenvalue problem (QEP)

(λ2
i M + λiC + K)xi = 0, y∗i (λ2

i M + λiC + K) = 0, xi 6= 0, yi 6= 0, (i = 1, . . . , 2n). (2)

An eigentriplet (λi,xi,yi) is composed of an eigenvalue λi and corresponding right and left eigenvectors xi,yi ∈ Cn.
By transforming [10, Section 3.5] QEP (2) and system (1) to linear equivalents, the partial fraction representation becomes

H(s) = c∗X(sI−Λ)−1ΛY ∗b =
∑2n

i=1
Ri

s−λi
, where X = [x1, . . . ,x2n], Y = [y1, . . . ,y2n], and Ri = (c∗xi)(y∗i b)λi. The

terms Ri are called the residues, and xi and yi are scaled so that −y∗i Kxi + λ2
i y

∗
i Mxi = 1.

A pole λi of H(s) with corresponding right and left eigenvectors xi and yi is called the dominant pole if R̂i = |Ri|
Re(λi)

>

R̂j , for all j 6= i. More generally, a pole λi is called dominant if |R̂i| is not very small compared to |R̂j |, for all j 6= i. This
can also be seen in the corresponding Bode-plot, which is a plot of |H(iω)| against ω ∈ R: peaks occur at frequencies ω close
to the imaginary parts of the dominant poles of H(s).

3 Quadratic Dominant Pole Algorithm

The poles of H(s) are the λ ∈ C for which lims→λ |H(s)| = ∞ and hence lims→λ 1/H(s) = 0. In other words, the poles
are the roots of 1/H(s) and a good candidate to find these roots is Newton’s method: noting that H ′(s) = −c∗(s2M + sC +
K)−1(2sM + C)(s2M + sC + K)−1b and starting with initial pole estimate s0 gives the following scheme:

sk+1 = sk +
1

H(sk)
H2(sk)
H ′(sk)

= sk −
c∗v

w∗(2skM + C)v
,

where v = (s2
kM + skC + K)−1b and w = (s2

kM + skC + K)−∗c.
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Fig. 1 Exact and reduced system transfer functions for the gyro (left) and vibrating body (right).

QDPA can be extended with subspace acceleration (keep search spaces for right and left eigenvectors) and a selection
strategy (select the most dominant approximation every iteration) to improve global convergence to the most dominant poles,
and deflation to avoid recomputation of already found poles. See [8] for more details.

4 Numerical results and conclusions

The left figure in Fig. 1 shows frequency response Bode plots of reduced order models based on 10, 20, 30, and 35 poles and
corresponding eigenvectors, for a micro-mechanical gyro with n = 17361 degrees of freedom [11]. As can be seen from the
matching of the peaks, QDPA finds the dominant poles.

The figure at the right in Fig. 1 shows the frequency response of a 70th order Second-Order Arnoldi [12] reduced model
of vibrating body from sound radiation analysis (n = 17611 degrees of freedom), that was computed using the complex part
iβ of dominant poles λ = α + iβ (computed by QDPA) as interpolation points. This model is more accurate than reduced
order models based on standard Krylov methods and matches the peaks up to ω = 1 rad/s, because of use of shifts near the
resonance frequencies.

The Quadratic Dominant Pole Algorithm (QDPA) is an efficient and effective method for the computation of dominant
poles of second-order transfer functions. The dominant poles and corresponding left and right eigenvectors can be used
to construct structure-preserving modal equivalents and to determine interpolation points for rational Krylov based model
order reduction methods. QDPA can be generalized to MIMO systems and higher-order systems, and can be used for the
computation of dominant zeros as well. For more details and results, see [8].
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