_ domain techniques. Detailed results and

‘EIGENVALUE AND l-‘R[-)QU‘ENCY DOMAIN ANALYSIS OF SMALL-SIGNAL
ELECTROMECHANICAL STABILITY PROBLEMS T

Nelson Martins, Member IEEE

Centro de Pesquisas de Energia Elétrica - CEPEL
Caixa Postal 2754 ) ‘
Rio de Janeiro, RJ, 21945, Brazil

Keywords ~ Excitation Control, Additional Feedback,
Static VAr Compensators, Electromechanical Oscillations,
Power System Dynamics, Stability.

Abstract — This paper discusses many aspects related to

T
small-signal electromechanical stability. The major emphasis is
on stabilizer signal tuning through ei§envalue and frequency

power systems analyzed. Feedback control difficulties associated
with badly located zeros are discussed.

1. INTRODUCTION

The analysis and control of electromechanical oscillation
damping in power systems [1] has been a subject of large practical
intetest over the last two decades. This paper has a tutorial
nature for addressing various aspects of small-signal
electromechanical stability but also reports some new results in
the area. Full data and detailed results are here provided for
stabilizer tuning examples in single-machine and multimachine
systems. This information may prove valuable for engineers
willing to validate their small~signal stability software.

Section 2 of this paper contains a brief review of the
algorithms presently employed in the linear analysis of the
small-signal electromechanical stability of large power
systems?Z-lO]. ,

Section 3 describes tuning procedures for ~additional
stabilizing signals through the use of eigenvalue and frequency
response techniques. Stabilizer tuning has been widely described
in the technical literature, and l[11-15] together with associated
references are representative of this work. Section 3 presents
extensive results, including a few original ones, regarding the use
of different input signals to a stabilizer. The procedure described
can be used for tuning stabilizing signals added to gencrator
exciters, static VAr compensators, HVDC systems or to any
other component in the system.

The effects of load modelling on small-signal stability are
presented in Section 5 in the form of stability regions for a
single-machine infinite-bus system supplying a load. Results
concerning load modelling effects on a multimachine system are
included in Section 6.

ull data are given on the
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The multimachine system analyzed in Section 6 shows
stabilization difficulties associated with a complex pair of zeros
located on the right-half~plane. This type of problem does not
occur on single-machine-infinite-bus systems and requires
multimachine eigenvalue and {requency domain methods to be
detected, analyzed and solved. The results of Section 6 regarding
power system zeros [2,16] are considered to be of particular value.
Transfer function residues (1,2} can be effectively used to
determine the most adequate locations for placing damping
sources in a power system. Results on residue ranking for I's5
location are given in Section 6.

The complete data of the test systems studied are given in
the appendices so that every result of this paper may be
reproduced. These results were obtained by a comprehensive
small-signal stability analysis package. Such a package is of high
value to the analysis of a range of smali-signal stability problems
as will be secn in the paper.

The redundancy in the rotor swing state variables of a
multimachine matrix was not correctly interpreted in some.
classical papers on this field. Though this problem may now be
well understood, the material of Appendix 5 is of interest.

2.  OVERVIEW OF METHODS FOR SMALL SIGNAL
STABILITY ANALYSIS

The power system electromechanical stability problem can
be represented by a set of differential equations together with a
set of algebraic equations, to be solved simultancously with each
other:

f(x,z)

z (2.1
g(x, z) )

X
]
where x is the state vector and z is a vector of algebraic variables.

Small-signal stability analysis involves the linearization of
(2.1) around a system operating point (xo, Zo):

Ax Jy J2 Ax
= (2.2)
0 | Az

The power system state matrix can be obtained by *
eliminating the vector of algebraic variables Az in equation (2.2);

Ax = (=324 33) Ax = A Ax (2.3)
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‘The symbol A is used to represent the system state inatrix,
whose cizenvalues provide infarmation on the singular point
stability of the non-linear system.

The symbol A signifies an incremental change from a
steady-state value and will often be omitted in the remaining
part of this paper.

2.1 Traditional Algorithms

For many years, programs have been developed to form
explicitly the state space equations:

X

y

Ax+bu

(2.4)
Cx

Full eigensolution of non-sparse matrix A is normally
restricted to systems of moderate size {below 500 states) due to
the large memory and computation time requirements.

The transfer function F(s) relating the input (u) and
output(y) variables is obtained from the Laplace transformation
of the equation shown in (2.4): :

F(s) = C(sI-A)'} (2.5)

The frequency response analysis of dynamic systems can be
performed by replacing the Laplace variable "s" by "ju" in
equation (2.5) and numerically calculating F(jw) for discrete
values or "ju" within the frequency range of interest. The use of

equation (2.5) becomes prohibitive for large order systems due to

excessive computational time and memory requirements.

Transfer function residue calculation [1,2], time response to
step disturbance and many other needed functions are all
prohibitive for large scale systems- using this traditional
formulation. )

2.2 Algorithns for Large Scz;lg Systems

The basic concept that allows the methods of the previous
section to be applied to large scale systems is the use of the
"augmented system equations"” 3], which is now described.

The basic equation relating state matrix, eigenvalues and
eigenvectors is: .

Aui= Xy (2.6)
where Aj is the i-th eigenvalue and y; its associated eigenvector.

An equation equivalent to (2.6) can be made in terms of the
Jacobian matrix shown in (2.2).

Ji Ja uj Ui

J3 Ja 2i ) Q

(2.7)

where (u', z')* is the augmented cigenvector of A; and is denoted
1 }

by u‘i‘- .

3
The state space equations of (2.4) can in a similar way be

expressed as:

X M J2 X
= +| b {u
0 J3 Je 2z
(2.8)
X -
y= [qxlcl] = CI&I
Z
- where

b* = augmented input vector
Ca = augmented output matrix
X* = augmented state vector

The large advantage of equation S2.8) is that the s
Jacobian matrix is highly sparse and allows the use of eflicient
sparsity—based algorithms. The main algorithms for the solution
of small-signal stability problems w%xich make use' of the
augmented system equations concept are listed below.

t-a—ti igenvalye calcyl

1. Inverse Iteration Method [3]
2. PEALS[4]
3. Newton Raphson Method [5]

‘n lation of

4. Lanczos Method applied o {(A) = (A + hI) (A-hI)t [g]
5. Simultaneous Iterations applied to f(A) = (A=ql)1{7)
6. Modified Arnoldi Method applied to f(A) = (A~qI)"t [7]

An interesting review on eigenvalue methods for very large
power systems may be found in [8].

Efficient Calculation of:

Frequency Response Plots.(3]

8. Participation Factors (4,9]

" 9. Transfer Function Residues,
Observability Factors [2)

10. Linear Time Response to Step Disturbance [3i

11.. External System Equivalent in Terms of Frequency
Response Relationships Between Injected Current and
Voltages at Boundary Buses [10] ‘

12. Eigenvalue Sensitivities to
Changes [5) '

Controllability and

Controller Parameter

A modern package for the small-signal analysis of ﬁower
systems should have a good part of the above listed algorithms,
The package must also have the possibility of obtaining full
eigensolution (for mid-size systems) by explicitly forming the
state matrix through Gaussian elimination on the Jacobian (see
equation (2.2)). This obviates the need to have a different
eigenvalue program to perform full eigensolution. cee
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A production grade software must have case of data input..
flexible user dcﬁnoﬁ controller models capable of sensing any
combination of local and remote system variables and good

rogram output. Program ecfficiency may be slightly sacrificed in
avour of the above facilities.

3. STABILIZER DESIGN THROUGH EIGENVALUE AND
- FREQUENCY RESPONSE METHODS

The stabilizer design techniques will be here discussed in
connection with the Study System I described in the next item.

3.1 Study System [

The Study System I is shown schematically in Figure 1 and
comprises a synchronous generator connected to an infinite bus
through a long line. At the middle of the transmission line there
are a capacitor bank and a static VAr compensator.

Figure 1. Configuration of Study System I

All system data are given in Appendix 1. The synchronous
generator has a 5th order model while the automatic voltage
regulator (AVR) has a first-order model. The power system
stabilizer (PSS} inputs considered in this paper are rotor speed

(w), terminal power (P,), bus frequency (¥) and apparent line

resistance(R).

The block diagram of the static compensator and its
stabilizing signal is shown in Figure 2. The input signal to the

compensator stabilizer is bus frequency () or transit power
deviations in a line (Py;).

The system operating point corresponds to a heavy load
condition and the angle displacement between the infinite bus
and the generator ficld voltage is 1040. This operating point was
chosen to magnify the stabilizing control problem with no
consideration given to‘the transient stability performance of the
system. The stabilizing signal loop gains were also made slightly
higher than needed, yiclding electromechanical mode dampings
beyond usual design values. '

"STATIC COMPE NSATOR

(14 4T3) (1 4s75) X By

(14 6T3) (2 +7,) 14Ty

COMPENSATOR STABILIZER

!css(1+n’s)(l+-f7) *Tio 0 or Pij

(14‘!73)(10'!79) 14874

Figure 2. Block Diagram of Static VAr Compensator
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3.2 Eigenvalue Results

The static compensator is not ahsorbing nor gencrating
reactive powcr for the operating point considered. The cigenvalue
andlysis for this operating point. considering the presence or
absence of different system controllers, clearly shows their effect
on the small-signal stability of the system.

Table 1.a shows the eigenvalues for the system with no
static VAr compensator (SVC) nor automatic voltage regulator
(AVR). The system is of 5th order and’ suffers from aperiodic
instability (A = 4 0.196) due to the lack of synchronizing torques.
Including the static compensator model (Table Ic) the system
becomes of 8th order and presents a very slow aperiodic
instability (A = + 0.002). This result shows that the SVC
significantly increases the gencrator synchronizing torques.

The system with AVR but without SVC is of 6th order and
presents oscillatory instability (see Table 1.b) due to the negative
da.mpinf introduced by the AVR [11). Table 1.d lists the
eigenvalues for the system having both AVR and SVC. The
system i3 of 9t order and shows oscillatory instability
(A=+0.493 + j5.08L.eFrom the eigensolutions shown in tables
Lb and 1.d it can seen that the SVC partly cancels the
negative damping introduced by the AVR. The other results
shown in Table 1 will be discussed in the remaining part of this
section and are relative to System I having both AVR and SVC
and ‘incorporating different” stabilizing signals. Note that the
complex eigenvalue pair associated with the generator
electromechanical oscillation (hunting mode) is bold-faced for
easy reference in all eigensolutions shown in Table 1.

. Table 1. Eigenvalue Results for System I

no AVR with AVR
(a) moSVC (b) noSVC
-35.5 -38.20 -
-0.399 + j4.33 : -13.06
+ 0.196 +0.883 + j4.50
-2.81 -4.71 £j1.39
no AVR . with AVR
(c) withSVC (d) withSVC
-419.8 -419.8
©=35.5 -38.17
-0.184 + j5.03 -13.26
-3.74 +0.493 + j5.08
+ 0.002 -3.61
-0.982 4+ j0.128 -3.62

(¢) with PSS,

~0.958 +j0.172

(f) with PSS,

-4198 -419.8

-32.03 +j2.083 -38.18
-6.248 1+ j8.051 -13.19

—0.586 + j4.899 -7.329

-5.01 ~0.583 + j5.257
-3.626 -0.293 3 j2.033

-0958 40173
-0.338

-3.728
-0.267
-0.972 4 j0.154
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(g) with PSS (h)  with PSS,
~419.8 -998.7
~39.28 -419.8
-10.22 -70.40
—-0.616 £ j5.007 -0.399 +j 15.60
-4.387 + j2.428 —0.505134.705
-0.960 £ 0.171 ~5.810 1 j0.535
-3.748 -3.626
-0.332 -0.959 + j0.172
-0.335
(i)  with PSS, (i)  with CSS,
-4198 -1007.
-39.75 -410.
-9.41 -37.17
~0.582 4 j5.171 —14.44
-3.799 + j3.807 —0.602;tj 4.867
~-3.762 =5.204 1 )0.996
-0.956 + j0.185 -2.637
~0.146 -0.950 + j0.185
~0.345
(k) with CSS; (& . with CSSs
~37.1 -394,
+0.0340 +£j90.3 - -38.18
-16.3 -21.01.
~8.76 -16.46
~0.0146 + 14.94 -1.689 + j9.930
-5.24 -7.785
-3.63 ~0.585 4 j4.831
-0.958 + 0.172 -3.320+j0.771
-0.333 -0.959 1 j0.172
-0.333

33 PSS Design Through the Torque-Angle Loop

System I with AVR and SVC has a pair of unstable
cigenvalues, as shown in Table 1.d. This system can be made
stable by installing a power system stabilizer (PSS) to the
generator AVR. To improve system damping, the PSS must
produce a component of electrical torque in phase with rotor
speed variations. This basic concept has been extensively used to
tune stabilizers [11]. The power system needs to.be modelled
through the generator torque-angle loop, as shown in Figure 3.
This block diagram has been well explained in the technical
literature related to synchronizing and damping torques and
generator stabilizer tuning (see {11] and associated references).

ALL OTHER
CONTRIBUTIONS
45 | w,
G (s) 3
AT,
ATpm }_ *°
6\ 1 [YN)
+ K_ Ms
aT,, .
GENERATOR, EXCITER, POWER SYSTEM
POWER SYSTEM STABILIZER
;
GEP(s) PSS (s)

Figure 3. Generator Torque-Angle Loop

In order to provide damping torques through the PSS, it is
required that the PSS transfer function compensates for the phase
lag of GEP(s) over the range of frequencics of the
clectromechanical oscillations. Note that for System I the GEP(s)
must take into consideration the dynamic effects of the static
compensator at bus 4.

The polar plot of GEP(s) is shown in Figure 4, and we sce
that at the system electromechanical frequency 35.1 rad/s) the
phase lag to be compensated by the PSS is aroun 800, The PSS
parameters must be adequately chosen in order to provide the
right compensation, as described in [11] and in Section 3.5.

The authors recognize the merits of the torque-angle loop
analysis for PSS tuning, but favour the use of the AVR control
loop analysis, which is described in Section 3.5 of this paper. .

-4 "
.o 3-’__20
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X o
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[ -]
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©
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-
i
T T T T T T
-0.32 0.24 0.79 1.35
real axis

Figure 4. Polar Plot of GEP(s)

3.4 The Nvquist Stability Criterion

This section is very brief since this criterion is well
discussed in control theory textbooks. The Nyquist criterion

allows the assessment of the closed-loop stability of a feedback .

system from the knowledge of the open-loop transfer function
poles and its frequency response plot. Considering the feedback
system shown in Figure 5, the open-loop transfer function
(OLTF) is G(s) H(s) and the closed loop transfer function is

G(s)/(1+G(3)H(s)).

ouT

1 G (s)

H(s)

Figure 5. Feedback Control System

The Nyquist criterion stablishes that: Pc = Py + N, where
N is the number of clockwise encirclements of the (-1,0) point of
the complex plane made by the frequency response plot of the
OLTF as the applied frequency varies from oo to 400 . P, and
P¢ are the number of unstable poles (or eigenvalues) of the-
open-loop and closed-loop systems respectively. These frequency
response plots can be obtained just for positive values® of
frequencies and in this case they will encircle \{2 times the -1
point of the complex plane. Polar plots or Bode plots can beé usad
to the same effect in this analysis, but the former is preferred by

the authors. The terms polar plots and Nyquist plots are used
undistinétly in the text. :
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" system transfer function is G(sz,

The design of stabilizing signals applied to generator
excitation control systems. static VAr compensators and HVDC
links can be carried out using Nyquist plots. In all cases the power
which can be of high order
depending on system size, and H s) is the transfer function of the
stabilizing signal to be designed. :

: The stabilizing signal is normally considered as a positive
eedback (see Figures 6, 12 and 15) but the Nyquist stability
criterion here applied is for the case of a negative feedback. For
this reason, all polar plots shown in the paper were actually
multiplied by -1.

3.5 Design Thr. he AVR T

Figure 6 shows a block diagram which describes the
complete power system dynamics through the AVR control loop.
The blocks AVR(s) and PSSSs) correspond to the transfer
functions of the automatic vo tage regulator and the power
system stabilizer respectively. The functions Fi(s) and Fy(s)
relate the field voltage with the generator terminal voltage and
the variable used as the input to the stabilizer. The dynamic
effects of the generator and SVC are considered in F;é) and
Fa(s), which are 8th order transfer functions. All polar plots
shown in this section are for the condition with the voltage
feedback loop (block Fi(s) in Figure 6) closed.

vy
- |7 auromatic ’
v | voLTAGE REGULATOR Fy (s)
n A 3
‘—d AVR (s} fd
+ +
POWER Fp (s)
SYSTEM STABILIZER "
\'"/
pss PSS (s) W,Pt, 8 R

- Figure’6. Power System Representation Through the AVR Loop

Speed Input Stabilizer

Figure 7.a shows the polar plot of the transfer function
Aw(s)/AV.Ss), relating rotor speed deviations with AVR
reference voltage. The numbers shown near the polar plots are the
frequency values of the applied input signal. The system to be
stabilized, whose eigensolution is shown in Table 1.d, has a pair of
unstable eigenvalues. Therefore P, = 2 and according to the
N{ﬂuist stability criterion the polar plot of the OLTF
AVpsi(s)/AVe(s) must encircle the -1 point in the
counter~clockwise direction (N = -2)to ensure stability of the
closed loop system (P = 0).

The initial procedure adopted in stabilizer design is to
deduce compensation circuit requirements in terms of gain and
phase requirements at the critical frequency 5.1 rad/s. From
Figure 7.a it is seen that the PSS blocks should provide around 70
degrees phase advance at 5.1 rad/s. Note that this phase
compensation requirement (70°) is about the same as that (800
identified through the torque~angle loop analysis of Section 3.3
This can be provided by a couple of phase advance units with

transfer function

(l +saT)

. wherea > 1.
1 + sT
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To minimize high frequency gain, which amplifics the signal
noise level, the parameter "a" should be as small as possible. The
maximum phase-lead angle ‘(Pmax) obtained with this phase
advance unit is given by the expression: -

[ i
. a+1

The time constant T determines the frequency weax at
which ¢his maximum phase-lead anglé uccurs:

1
T +va

Waax =

electromechanical mode. The constant T is chosen so as to make

thisd maximum occur at- the frequency of the electromechanical
mode.

As the required 700 Compensation is provided by two phase
advance units (the derivative block $Tw/(1 +sTw) does not add
any significant phase shift at the electromechanical frequency)
the value of Qnax is 350. For this tg,m and waax = 5.1 rad/s we
calculate a = 4 and T = 0.098 s. "hese values are however not
critical and deviations from them are quite acceptable. The polar
plot for the OLTF AVpss(s)/AV(s) with the PSS(s) stabilizer is
shown in Figure 7.b (this stabilizer has a=4 and T=0.075). Note
that the polar plot encircling the -1 point should be
approximately symmetrical with respect to the real axis to yield
good phase margin. Figure 7.b shows that once the correct phase
shift is achieved, the gain requirement of the stabilizer is not too
critical with re§ard to stability margins. This fact is further
explained in the following lines.

T
=0.01
axls

real

Figure 7.a. Polar Plot of A5}/ AV (s)
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Figure 7.b. Polar Plot of AVpe(s)/AV{s) for PSSi(s)
derived from rotor speed (phase-lead)
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Figure 7.c. Polar Plot of AV ps5(s)/ AV (s)for PSSs(s)
derived from rotor speed (phase-lag)

The root locus for the two critical pair of poles in the
system is pictured in Figure 8. Ounly the upper-half of the plot is
shown; the lower-half is a inirror image of the upper-half. The
root locus plot shows that system stability is maintained for
3.3 < Kpss < 50. A value larger than 50 turns the exciter mode
unstable while a.value smaller than 3.3 turns unstable the
electromechanical mode. This fact can be directly seen from the
polar plot of Figure 7.b, since it varies linearly with the PSS gain.
The polar plot cuts the negative real axis at points —2.12 and
-0.14 for applied frequencies 3.1 and 15.9 rad/s respectively.
System stability is maintained if the PSS gain is within limit
values given by the ratios: 7/2.12 and 7/0.14, where 7 is the gain
value used to obtain the polar plot. This polar plot result
indicates that the root-locus crosscs the jw-axis at points j 5.1
and j 15.9 for gain values 3.3 and 50 respectively. The frequencies
5.1 and 15.9 rad{s are known in control theory terminology as
phase—crossover frequencies. The symbol w, is used in the polar
plots of this paper to denote a phase—crossover frequency.

The eigensolution for System I with the PSS,(s) stabilizer is
shown in Table 1.e. T 5

jw (e/s)

Kpes -50\/57

EXCITER MODE A0

9,
XeT

=7

ELECTROMECHANICAL MODE | %P *3-3
5 .
p 0
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Figure 8. Root Locus for PSS;(s) Stabilizer

Note, from Figure 7.a, that the system can also be
stabilized by phase retarding the speed signal by approximately
1100 at about 5.1 rad/s and subtracting it from the voltage
reference signal (V). This requirement is fulfilled by the
phase-lag transfer function PSSy(s) shown in the Appendix. The
Nyquist plot for the OLTF AV,,ss(s)/AV.-(szl with the PSSy(s) -
transfer function is pictured in Figure 7.c, where it is seen that
the range of gain values for system stability is 56.8 < Kpgs < 143.
Note that the ratio between these two gain values (143/56.8) is
considerably smaller than that obtained with the PSS,(s)
stabilizer (50(3.3). The eigensolution for System [ with the
PSS, (s) stabilizer is shown in Table 1.1.

It is interesting to note that by phase retarding the speed
signal, the system shows a curious change in its behaviour. With
the rise of the PSS gain the s?'stcm will become unstable and show
growing oscillations at a frequency lower than that of the
electromechanical mode (the higher frequency Exciter Mode
disappears). When the gain of the PSSz(s)Y stabilizer is
set to—150, the dominant system eigenvalues are
A =+0.0637 £ j 1.969 and A = ~0.815 £ 5.475. .

Phase retarding the speed signal is not recommended and
these results are only included to show the usefulness of the.
frequency response technique. In large system models, a phase
retarded speed signal usually leads to a low frequency unstable
mode for practical values of loop gain.

Generator accelerating power has an inherent 90° phase’
advance with respect to rotor speed, and presently is considered
the best signal choice for stabilization through the excitation
control system. This signal can not be directly measured, but can
be synthetized as shown in [17].In System I, due to the absence of
mechanical power variations and stator resistive losses, generator:
terminal power equals accelerating power except for a sigh
change. An analysis of the polar plot of function AP(s)/AV(s)
(see Appendix 4).indicates that a finely tuned PSS needs a
small phase lag at 5.1 rad/s. The polar plot for the OLTF:
AVpes(s)/AV(s), relative to a stabilizer sensitive to generator
terminal power (PSS;q&s) of Appendix 1), is pictured in Figure9"
where the range of gain values for system stability is
0.35 < Kpgs < 17.5. Note that the ratio of these two gain values
}}7.5/0.35) is considerably larger than that obtained with the

SSi(s) stabilizer. The eigensolution for System 1 with the
PSS;&S stabilizer is given in Table 1.g. -
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Figure 9. Plot of AV (s)/ AV (s) for PSS3(s)
sensitive to generator terminal power.
E I Stabiliz

Let us now consider the generator terminal bus frequency as

*the stabilizer input signal. The polar plot for the OLTF "

AVpe(s)/AVi(s), when considering the PSS4(s) stabilizer, is
shown in Figure 10. The range of stabilizer gain values for system
stability is 4.16 < Kpes < 10.96. Note that the ratio between these
two gain values (10.96/4.16) is considerably smaller than that
obtained with the PSS(s) stabilizer. The eigensolution for
System I with the PSS,(s) stabilizer is shown in Table L.h. It is
seen that, for the same level of damping for the electromechanical
mode, the exciter mode (A = ~0.399 + 115.60) is already lightly
damped. These results indicate that the generator bus
frequency signal yields reduced gain margins when compared to
the generator rotor ‘speed signal. Note that the rotor speed
signal can be approximately obtained from measurement of
frequency of a synthetic voltage simulating the g-axis voltage

(Eq= Ve + jIXq) as described in [17].

~
5,
|
x
02
=9 e
¢ D I
© W.=15.6
co I :
€3]
o
o I
€ 1
—
2 l
) L] T T T 1 T
-2.66 -1.88 “t.11 -0.33
real axis

Figure 10. Plot of AViss(s)/ AV (s) for PSS4(s)
sensitive to generator bus frequency

We found that the frequency of the synthetic voltage Eq
had a slightly better performance than the rotor speed signal as
regards stabilizer gain margins. The phase compensation
requirements of these two signals were equal for practical

urposes. The results obtaincd therefore indicate that the
requency of voltage Eq is considerably superior to the terminal

bus frequency as a stabilizer input signal.
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Line Resistance Input Stabilizer

Another stabilizer input signal considered in the literature
is the transmission line apparent resistance: R = P/12. The polar
plot of Vpes(s)/Vi(s) for the PSSs(s) stabilizer, which is derived
from a line apparent resistance signal, is pictured in Figure 11 and
shows that system stability occurs when 0.75 < Kpss < 19.5. The
'e;ggrllsolution for System [ with the PSSs(s) stabilizer is shown in

able 1.1,

axls
.41

1

ginar
~0.19

ims
-).aol

LS . [l' 1
<0.35  0.47
axtis

1 L]
-2.00 -1.17
real

Figure 11. Plot of AVpss(s)/ AV (s) for PSSs(s)
derived from apparent line resistance
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It is convenient to mention the case in which the OLTF has
a pair of undamped but stable poles. A correctly tuned PSS in
this case, aimed at damping this pole pair, should make the polar
plot encircle the (+1,0) point of the complex plane. This polar
plot should also be approximately symmetric with respect to the
real axis of the complex plane to characterize a good PSS design.

Note that PSS design could also be carried out by

considering a different open-loop transfer function (OLTF yin

the block-diagram of Figure 3. The OLTF adopted in {12] is
AVRSS) Fi(s) + AVR(s) Fa(s) PSS(s), whose polar plot varies
linearly with the AVR gain rather than with the PSS gain. The
poles for this OLTF are the system eigenvalues when the AVR
gain is set to zero. '

We conclude by mentioning a large advantage of the
AVR~—control-loop over the torque-angle-loop analysis: the
former can be directly verified (or conducted) through frequency
response measurements at the plant [11).

3.6 Hlizing Signal to the Static Compensat

Stabilizing signals applicd to static compensators can
effectively ' damp clectromechanical oscillations. Frequency
response methods can be used for the design of this stabilizing
siﬁnal as shown in this section. Figure 12 shows a block diagram
which describes the complete power system dynamics through the
static compensator control loop. The blocks SVC(s) and CSS(s)
denote the transfer functions of the static compensator and its
stabilizing signal respectively. The blocks Fj(s) and Fy(s) relate
the compensator shunt admittance (By) with the deviations in
the regulated bus voltage (V) and the system variable used as the

. input to the stabilizer.

Two stabilizer inputs are here considered: the frequmcy'

deviations (#) at bus 2 and the transit power deviations in the
transmission line between buses 2 and 3 (P2-3). All polar plots -
shown here are for the condition with the voltage feedback loop
(block F(s) of Figure 12) closed.
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Figure 12. Power System Representation through the SVC Loop
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Figure 13. Polar Plot of AV ss(s)/AV((s) for Stabilizer CSSy(s)
Frequency Input Stabilizer

The open-loop transfer function AVes(s)/AV c(s) has t‘wc‘

unstable poles and therefore its polar plot must encircle the ~1
point to ensure closed-loop system stability. The symbol Vi
denotes the static compensator reference voltage. Figure 13 shows
the plot of AVees(s)/AVi(s) for stabilizer CSSi(s) which is
sensitive to bus frequency deviations. This plot shows that system
stability is obtained for 64.6 <'Kss < 00 , where Kess is the gain
of the compensator stabilizing signal. The eigensolution for
System I with the CSS,(s) stabilizer is shown in Table Lj.

Line Power Input Stabilizer

The plot of APa.3(s)/AV(s), where APy.; denotes the
transit power deviations in the line between buses 2 and 3, is
shown in Figure 14.a. The magnitude of this transfer function
decays slowly as the applied frequency is increased and still is
relatively large for frequencies around 200 rad/s. This fact
indicates that stabilizer design will now be of greater complexity
than in the previous case. An explanation to this fact can be given
by looking at Figure 2 and noting that at high frequencies the
following approximation holds:

AB\-!S! - T| Tg T5 T7 - K B
AP3.3(s) T3 T4 Ts To 1+ s Ts)

This transfer function has high gain and low attenuation at
high frequencies. The electrical nétwork is modelled Ly algebraic
equations and therefore a component of the transit power Pj_3
instantaneously follows any change in the variable shunt
admittance  By.  Accordingly, the transfer function
AP2.3(s)/AVic(s) also shows high gain and low attenuation at

high frequencies. This was not observed for A¥(s)/AV,(s), since
the bus frequency variations are determined by the generator
rotor oscillations, which rapidly decay with increasing values of
applied frequency due to rotor mechanical inertia.

Figure 14.b shows the polar plot of AVm(s)/AV,cﬁs) for a
stabilizer function CSSy(s). The stabilizer transfer function
provides the right phase compensation at the critical frequency
5.1 rad/s but fails badly at high frequencies. The system
eigenvalues are shown in Table 1.k where the electromechanical
oscillation mode (XA = -0.0146 + j 4.94) is not sufficiently damped
while a high frequency mode (A = + 0.034 % j 90.3) is alrcady
unstable. The power system model used here is only correct for
frequencies up to a few Hertz and the high frequency mode here
calculated is therefore largely in error. This result, though
approximate, is of interest since it identifies a problem associated
with the use of line transit power deviations as a stabilizer signal.

Figure 14.c shows the polar plot of AV ge(8)/ AV e(s) for a
stabilizer function CSS3(s) which provides the attenuation nceded
at hi(gih frequencies. The phase advance needed at 5 rad/s is
provided by two phase-lead blocks. The two phase-lag blocks
reduce the stabilizer gain at higher frequencies, eliminating the

instability observed with the CSSy(s) transfer function. The

eigensolution for System [ with the CSS;(s) stabilizer is shown in
Table1.L :
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4. COMMENTS ON HVDC LINK MODULATION FOR
ELECTROMECHANICAL DAMPING

HVDC systems have been increasingly used in many parts
of the world for bulk power transmission and other applications.

have very fast response and a large potential for damping
electromechanical oscillations through DC power modulation.

Figure 15 shows a block diagi-am which describes the
complete power system dynamics through the HVDC converter
control loop. :

This block diagram is similar to the ones shown in Figures 6
and 12 and can also be used for the frequency response design of
-stabilizing signals added to the HVDC current controller.

DC- CURRENT , Idc

CONTROLLER
- FIRING

tu;m :>_ oce () ANGLE , &

+ +
. STABILIZING Fg (s)
SIGNAL
v
o8 DSS (s) | |

Figure 15. Power System Representation Through
the HVDC Converter Control Loop

The blocks DCC(s) and DSS(s) correspond to the transfer
functions of the HVDC link current controller and the additional
stabilizing signal respectively. The. functions Fs(s) and Fg(s)
relate the rectifier firing angle with the DC line current and the
AC system variable (bus frequency, transit power in a line, etc.)
to be fedback through the stabilizing signal respectively,

The analysis of an AC/DC system, involving the design of
HVDC link stabilizers through eigenvalue and frequency response
methods, will be the subject of a separate publication.

5. * LOAD MODELLING EFFECTS ON SMALL-SIGNAL
STABILITY : }

The impact of load modelling on small-signal stability can
be more readily appreciated on a single-machine infinite-bus
system. Figure 16 depicts the power system studied whose data
can be found in Appendix 3. The generator is represented by a
5~th order model, while the fast acting excitation control system

OC CURRENT o (5) __'
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and the induction motor load have first and third order models.
Tespectively. The system load. located near the gencrator.
remains with fixed maguitude throughout the study, inﬁepcndvm
of its dynamic characteristics.

A convenient way of describing small-signal stability limits
of a generator connected to an infinite system through a tie line is
by expressing the stability regions in terms of the power P + jQ
delivered by this generator. These regions are here presented in
the P-Q plane with the generator bus voltage held at a constant
magnitude [ISL. All the changes in P and Q are made by varving
conveniently the magnitude and angle of the infinite bus voltage.
The P-Q plots of Figure 17.determine the regions to the left of
which the system will present oscillatory modes with a damping
ratio £ greater than 0.03, where § = -R/(R?2 + M?2)0.5 a3q
A=R+ jM. In order to obtain the curves of Figure 17 a fow
hundred operating conditions were investigated with the use of an
eigenvalue program. Figure 17 shows P-Q plots when the active
part of the system load is modelled as constant impedance (Z),
constant current (I) and constant power (P). Figure 17 also shows
P-Q plots for an induction motor load whose value of inertia (H)
is seen to have a large impact on the small-signal stability of the
system studied. The two plots shown correspond to the same
motor parameters except for the inertia constant (H) whose
values are 0.5 and 5 seconds. .

The curves of Figure 17 also show the large improvement in
system damping obtained with the installation of a- fixed
parameter PSS over the full range of operating conditions and for
the different load characteristics.

@ } 10-0.5' jo.e E

1 2 3

—_— :
P+jQ P+ iQ
Figure 16. System Used to Obtain P-Q Stability Plot

Q(MvAr)

2004 He5.0

WITH PSS —
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Figure 17. Regions in the P-Q Plane with £ > 0.03
6. STUDYSYSTEMII e

" The location of the zeros of the OLTF of a feedback system '
is closely related to the ease with which the system is controlled.
If the zeros are so located in the complex plane such that the root
locus branches ending on them lie on the right~hal{-plane (or
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close to the imaginary axis) for gains in the range of interest for
the closed loop svstem then they are not suitably located. This
fact will he clearly scen in the analysis of Study System 1.

The Study System 11, pictured in Figure 18, is a slightly
modified 7-bus cquivalent of the model used in the initial
planning studies of the taipu generation and AC transmission
complex. The ltaipu generator is connected to the Southeast
Region (represented by a static load together with a large
svnchronous motor) through a series compensated 765 kV line.
An intermediate 765 kV bus is connected to.a 500 kv
transmission ring containing three other hydro stations: S.
Santiago, S. Segredo and Foz do Arcia. The AVR models used in
the original system were disregarded in favour of a simpler
first~order model which is common to all machines. All loads are
of the constant-impedance type. The operating point considered
is derived from a heavy load condition of the original system, but
the transmitted power in the 765 kV line was raised by an
additional 10 percent.

4 . s

. =
i_‘

1ITAIPL

o
m

R

SOUTHEAST
EQUIVALENT

SALTO SANTIAGO FOZ DO AREIA

SALTO SEGREDO

Figure 18. Configuration of Study System II

6.1  Eigenvalue and Frequency Domain Analvsis

System Il shows a pair' of unstable eigenvalues

- (A= +10.646 + j 5.391) at the operating point investigated. The

task we pose oursclves is to damp this unstable mode through the
installation of stabilizers to the system generators. The existing
stabilizing action on the generators of the Southeast Region,
could be approximately represented by a PSS added to the
cquivalent synchronous-motor, but this effect will not be
considered. )

The obvious candidate for PSS installation is the Itaipu
generator. PSS tuning for the Itaipu generator through the
technique previously described requircs obtaining the polar plot
of the transfer function Awfs)/AV (s), considering the dynamics
of the entire multimachine system. From this plot, shown in
Figure 19.a, it is seen to be impossible to stabilize the system just
with a stabilizer at Itaipu. This is confirmed by the plot of
AP(s)/AV(s), shown in Figure 19.b, which also cannot be
compensated to yield an anti~clockwise encirclement of the
-1 point. The polar plot of "GEP(s) for the Itaipu generator.
pictured at Figure 20.a, indicates that a tuned PSS (though
unable to stabilize the sysiem) should provide a 1040 phase
advance at the critical. frequency 5.4 rad/s.

Figure 20.a was obtained when considering the full system
dynamics. A leading North-American utility suggests a very
simple procedure for stabilizer tuning based on the plot of the
GEP(s) for the generator analyzed with nearby generators
modelled as negative impedances and remote ones as infinite
buses [15]. This corresponds to a single-machine infinite-bus

model for the system, in which the equivalent impedance to the
infinite-bus is different from the Thevenin's value. Figure 20.b
shows the GEP (s) plot obtained according to the method of {15},
Note that it has about the same phase angle (1049) as the plot of
Figure 20.a at the electromechanical mode [, requency.

The root locus plot of Figure 21 shows the movement of the
Itaipu exciter mode and of the two main clectromechanical mode
poles as the PSS gain of ltaipu is varied. This plot is obtained
when considering PSSz(s) as the transfer function of the Itaipu
stabilizer. Note that the unstable electromechanical mode cannot
be stabilized by increasing the PSS gain since the associated pole
pair is attracted by a complex pair of zeros placed very slightly on
the right~half-plane (z = +0.049 +j 5.908). The use of generator
terminal power as the input signal to the stabilizer yields a
similar root locus since the transfer function AP(s)/AV,(s)
hasthe very same pair of zeros, This happens because
APy(s)=-2Hs Au(s) in the absence of mechanical power
variations and stator resistive losses.

Thé use of line apparent resistance as the stabilizer input
has in some instances [18] eliminated existing OLTF
right-half-plane zeros. This does not happen with System II
wﬁose transfer function AR(s)/AV(s), R being the line
resistance measured at the Itaipu generator termin s, shows a
pair of zeros: z = + 0.249 + j 6.404.

It is interesting to note that by adding stabilizers to the S.
Santiago, S. Segredo and Foz do Areia generators, the unstable
mode remains almost unchanged. When the PSSe(s) stabilizer is
simultaneously added to these three generators the unstable
eigenvalue pair is: A = + 0.656 1 j 5.379. If the PSS gains of
these three generators are simultaneously raised to infinity, this
unstable pole is slightly altered to: A = + 0.658 + j 5.371. This

unstable mode is therefore not controllable by "these three
generators.

Consider now the tuning of the Itaipu stabilizer in the
presence of stabilizers PSSe(s) in the other three generators. The
polar plot of Auw(s}/AV.(s) for the Itaipu generator, shown at
Figure 22.a, indicates the system can now be stabilized and that a
1000 phase advance is needed at about 5.4 rad/s. The polar plot of
AViss(s)/AV,(s) for the PSSy(s) stabilizer is shown in Fj ure
22.b and informs that system stability is maintained w n
25.9 > Kpgs > 6. Eigenvalue analysis shows that the least damped
eigenvalues are A = - (0.333 + j 5.206 and A = ~1.381 +j12.21 for
Kpss = 16. It is evident that the troublesome pair oil complex
zeros has disappeared from the A w(s transfer function of the

r s
Itaipu generator. This fact shows the complexity of the power
system stabilization problem: stabilizers may be needed in some
gencrators not for being able to damp system poles but for
moving away troublesome zeros and making other. PSS locations
more effective is damping oscillations.

does not necessarily mean they need to be on the'
right-half-plane. A 10 percent reduction on the power
interchange between the Itaipu and the Southeast Equivalent
machines causes the troublesome pair of zeros to move slightly
into the left-half-plane, but the System continues to present
basically the same stabilization problem.

The troublesome eigenvalue and zero pairs of the Itaipy
generator transfer function become A = + 0.667 + j 5.315 and
2=-~0.242 3 j 5.66 when AVR action is neglected on the three
generators of the 500 kV ring. A single PSS located at the Itaipu
generator can now stabilize the system through modulation of the
impedance loads of the 500 kV ring. Note that the maximum
damping achieved for the electromechanical eigenvalue is about

4% since it will coincide with z = — 0.242 1 j 5.66 for infinite gain
at the Itaipu stabilizer.

6.2 Transfer Function Residyeg

Transfer function residues [1] or controllability factors [13)
can be effectively used for determining the most suitable location
for placing damping sources in large power systems |2]. Transfer

Note also that improper location of transfer function zeros
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function residues have also been used in stabilizer tuning |1].

This section provides results on transfer function residues of
System II. The reader should refer to [1,2] for theoretical aspects
and results for large practical systems.

The residues for the —2F : transfer function of the

r
System II generators are given in Table 2 for the unstable
eigenvalue.

GENERATORS RESIDUE
Magnitude Phase
Itaipu 6.70 31.60
Equivalent 5.55 165.0
F. Areia 0.044 162.0
S. Segredo 0.042 160.0
S. Santiago 0.027 144.0

Residues of AP'(s)/AV(s) for
A=+0646+)5.391 (k= 1,2..5)

Table 2.

The generator ranking for PSS location is based on residue
magnitude. The Itaipu and Southeast Equivalent Machines are
seen in Table 2 to have large residues and therefore should be
effective in damping the troublesome eigenvalue when equipped
with stabilizers. The phase of the residues provide approximate
information on the stabilizer compensation requirements(1]. Note

“that the other three generators have a relatively small residue
" magnitude, suggesting the existence of transfer functions zeros in

the vicinity of the unstable eigenvalue. This information confirms
the eigenvalue results of Section 6.1: these three generators are
unable to shift the unstable eigenvalue through excitation
control.

In the absence of mechanical power variations, which is the
case in this study, there is a fixed relation between the residues of
the %&g} and E%(%sl] transfer functions of a given generator[2}:

r

R = -@HA+ D)RY

The superscripts w and P, denote residues associated with
the output variables w and P, respectively. The symbols H and D
represent the inertia and the mechanical damping constants of
the generator.

6.3 Load Modelling Effects on Svstem I

The effect of the voltage sensitivity of the loads on the
critical eigenvalue pair of System II is shown in Table 3 for three
values of gain for the Itaipu stabilizer. Apart from the Itaipy
PS§S;(s) stabilizer the three other generators are equipped with
the PSSe(s) stabilizer. The loads at all buses in the system were
modelled as constant impedances or had their active parts
Tepresented as constant current or constant powers.

Table 3 shows that, for Kpss = 0 and Kpgs = 8, the
electromechanical oscillation damping problem is worsened when
changing the 1oad model from constant impedance to constant
current or constant power. The linear responses of F igure 23.a
and 23.b confirm the eigenvalue results showing stable
oscillations for constant impedance and unstable ones for
constant power loads. The disturbance applied was a pulse in the
reference voltage of the Itaipu AVR, with 30 ms duration and-a
0.01 p.u. magnitude.

Note that for Kys = 16, the electromechanical eigenvalue
obtained with the constant power load model has higher damping’
than that obtained with the other two load models. This result
shows that the accepted idea that constant power- loads are
detrimental to stabilizer damping action is not valid in al] cases.

The linear response results of Figure 23.c and 23.d are for
Kpss = 16 at the Itaipu stabilizer. Note that the large difference
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in eigenvalue damping between cases with constant 7 and
constant P load models is not readily detected in the step
response results due to the contributions of other system modes
and the different location of the transfer function zeros.

Itaipu Stabilizer Gain
Kpss = 0 Kpss = 8 Kpss = 16
L |2 + 0.656 -0.114 -0.333
2 +j5.38 +j5.33 +js5.21
D X
I .} +0.854 - 0.026 -0.373
$ +j525 +j5.01 +j4.86
P ,
E |P + 1.05 + 0.081 -0.518
tjs5.10 +j461 +J3.78
Table3.  Critical Eigenvalue as Affected by Load Type

and Stabilizer Gain. Notation: Z = const. impe—~
dance, I = const. current and P = const. power.
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7. FINAL COMMENTS

This paper dealt with small-signal stability problems
associated with electromechanical oscillations in power systems.
Phenomena such as subsynchronous resonance which require the
representation of generator stator and- network dynamics were
considered out of the scope of this paper.

It was seen that the design of stabilizing signals to be added
to generator AVR's, static VAT compensators or HVDC links can
be carried out using similar transfer function block diagrams and
the same frequency response technique. Eigenvalue analysis is
needed to obtain information on open-ioop and closed-lcop
sg:stem stability. The results presented in this paper, regardin
the generator stabilizer (PSS), show some of the advantages 05\
. the acceleratinF power signal over the others and also show that
W bus terminal requency leads to reduced gain margins when
. compared to the rotor spced signal. The frequency of the
Synthetic voltage Eq, on the other hand, has a performance
» equivalent to that of the rotor speed signal. The exercise with
System 1 was also meant to show that almost any measurable
. System variable may be used as input to a stabilizer, which has
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the task of providing the right phase and gain compensation, Ii is
obviously required that the undampcé oscillatory mode. I
observable in the chosen input variable to the stabilizer.

Present day algorithms allow the efficient calculation of the
dominant eigenvalues of large scale systems. The use of frequency
response techniques for large-scale power systems remains
computationaily expensive despite the full exploitation of the
Jacobian matrix sparsity. Large improvements can be obtained,
when performing repeated suufies. by calculating external system
equivalents for cgiiscrete values of frequencies within the range of
interest and storing them on magnetic disk for future use.
Repeated frequency response studies can afterwards be done on
the internal system, considering the full system dynamics, at the
cost of solving only the internal system { xof.

The possibility of obtainini frequency response between
any two variables on a system is ighly important for providing
directly the compensation requirements of a control loop, be it an
AVR, static compensator or HVDC link. These frequency
responses are obtained for the plant in a multimachine context
without the necessity of employing system simplification or
reduced order equivalents.

Transfer function residues, controllability and observability
factors are very useful in identifying best locations for placing
stabilizing signals and best variables to be fedback through these
signals. They can be obtained in a fraction of the time needed to

culate a single eigenvalue using present day algorithms for
large scale systems (2ﬁ '

The control difficulties which occur with the Itaipu
genera.tor in System II are due to improperly located zeros, and
isappear when stabilizers are added to other generators in the

system. This facts suggests that it may be good practice to have a
high redundancy in stabilizing action, provided the generator

With the exception of the P-Q plots of Section S, this paper
results are restricted to a single operating point of the two

We conclude by stressing the high benefits of having a
comprehensive linear analysis package for the study of
small-signal electromechanical stability problems. A good
package should allow the study of large power systems, having a
wide variety of components and controller structures, in 2 CAE
environment, where various linear control methods can be used in
a complementary manner.
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Frequency = 60Hz; MVA base = 300
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Bus Data

Bus Vol Generation
ne Magnitude Angle MW MVAr
&)u) (degrees)
1 1. 49.8 250 61.5
2 .989 24.9
3 1. 0. ~250 61.5
4 .989 24.9
The shunt capacitor at bus 2 has an admittance
of 0 + j 0.333 p.u.
Line Data
From To R + jX(pu)

1 2 0.+j0.5

2 3 0.+ 0.5

2 4 0.+0.3

I ner.
M.VA base = 300 . :
Tgo = 858 Xg . =026 pu
Tdo 0.038 qu =090s .
Ra = 0.0 X"; = 0.26 pu
)(d = 272pu X = 2.6 pu o
X é = 0.36 pu H = 3.84 kWs/kVA N
System Controllers

- The automatic voltage regulator has the following transferl_

function:
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AVR(s) = 50/( 1 + 50.05)

The static compensator controls the voltage magnitude of
bus 4 and has, at the system MVA base, the following transfer
function:

145 12
1+s5

SVC(s) = (—3%0
1 + 30.05

The power system stabilizers sensitive to the generator
rotor speed deviations have the transfer functions:

PSSi(s) = 7( $3 1 +50.3 2
: 1 + s3 1+ s0.075
1 + 80.05,2

3
PSSy(s) =-116 $
) (l+s‘i 1 + s0.45

The poes system stabilizer sensitive to’ terminal power
deviations has the transfer function:

3 1 + s0.14
PSSa(s) =-0.7 (—2) )
Sals) (1+s3'(1+so.2s'

Bus frequency deviations are simulated by passing the
phase angle signal, whose exact expression is easily obtained,
through a derivative block having a small time constant (1 msin
this paper). This extra block is added to the stabilizing signat
transfer function. :

© The 'power stabilizer sensitive to per unit terminal bus
frequency has the transfer function:

1 + s0.3.,2 s
T+50.0% (TFs0000

The power system stabilizer sensitive to deviations in the
apparent resistance of the line between buses 1 and 2 has the
function:

PSSy(s) = 10.5 (-33) (

"PSSy(s) = 1.4 (I_.i%) (_%%8'%%)

The static compensator stabilizing signal, when sensitive to
the per unit frequency deviations of bus 2 has the following
transfer function:

CSSy(s) = 148 (—33 (L + s0.14 s

1+s83 1 +5s028 1 + s0.001

For a compensator stabilizer sensitive to transit power
deviations in the line between buses 2 and 3, two transfer
functions are considered:

1 + 0.3 \2

1+ 50.075

CSSy(s) = 0.1522 (—53
. 1+ s3

33 _)( 145062 1 + 50022
1+83  1+s01 143501

CSSs(s) = 0.12

nerator Model
The fifth~order model for the synchronous gencx:ator is
described by the following equations:

4 (B) = = (Bra- (Xa - Xa)lg - Eq) ,

G (Ba") = o (X~ Xg")lo - Eq')

'
i
i
[
1
H
.
|
i
!

"3
4 (Ba") = —phn (B¢’ - (X'~ Xa"Mla ~Eq")
S (@) = 5 (Pa-Py)
%;6— = wo(w-1)

The generator algebraic equations are:

Eq"-Va4 = Ralg-Xo" kg
Eq"‘Vq ='Xd“ Id + R; Iq

Terminal voltage and electrical power are given by:
Ve = Va2 + Vg2

PQ = vdId+Vqu

Appendix 2.Complete Data for Study System II
Frequency = 60 Hz; MVA base = 1000

Bus Data
" Bus Voltage Generation
Magnitude . Angle AW MVAr
1 103 - 24.50 1658. —412.0
2 1.03 "27.20 1332. -200.1
3 - 1.029: 26.60 1540. —446.5
4 1.039 48.50 6500. 1958.6
5 .998 21.20
6 .989 21:40 4
7 0.966 0. —3164. 952.7
Bus Load -Shunt
MW MVAr (p.u)
1 2405.  —467. 0.1792
2 692.3 —184. 0.1491
3 688.2 -235. 0.1142
4 62.6 24.3 " 0.0368
5 845.8 -9.2 0.0330
6 —4.9 79.8 2.1420
7 2884, —196. 0.0420
Line Data
From Tp . ’ R+ jX (pu)
1 3 0.003 + j 0.038
2 3 0.005 + j 0.076
4 6 0.0029 + j 0.0731
5 1 0.019 + j 0.215
5 2 0.015 + j 0.225
6 5 0+ j0.039
6 7 0.004 + j 0.057

The line susceptances of this 7-bus equivalent were
ombined with the bus shunt reactors, and thie total values are
given in the bus data.



nchr N

GENERATOR BUS
1 2 3 4 7

MVA 1900 1400 1944 6633 6000

T"do 053 053 0.06 0.09 0.09
T"q0 123 123 10.09 0.19 0.2

H ) 4.5 4.5 4.5 5.07 5.

X4 0.85 0.85 0.88 0.9 1.

Xq 0.7 0.7 0.69 0.68 0.7

X"i 0.3 0.3 0.3 0.3 0.3

X: 0.2 0.2 0.2 0.24 10.25

X" 0.2 0.2 0.2 0.27 0.25
q

The stator resistances and mechanical damping constants D

are zero for all machines. All five machines have the same -

first—order model and parameters for the excitation control
svstem: AVR(s) = 30/(1 + s 0.05). Prime movers and
speed-governor effects are not represented. All power system
stabilizers considered in this study are sensitive to rotor speed
deviations. :

The power system stabilizers added to the generators
located at buses 1, 2 and 3 have the same transfer function:

s3 ( 1 +50.3 2
1 +s3 14 s0.075

PSSe(s) = 10

The root locus plot of Figure were made considering the
following stabilizer at the Itaipu generator:

PSS7(s) = K pes (—S3—) (-t 30-52 42
1483 1 +7s0.065

The polar plot and eigenvalue results presented for System
11 were obtained with Kpss=16 for the Itaipu stabilizer.

Appendix 3. Power System Data Used for Obtaining P-Q Curves

The network, generator and induction motor parameters
are all given on a 500 MVA base.

The voltage at bus 1 is held at 1 p.u. and the load of bus 2 is
held approximately constant at PL +j QL = 504 + j 279.

The generator parameters are the same as those of System
I. The automatic voltage regulator and rotor spced derived
stabilizer have transfer functions: ’

AVR(s) = 40/(1 + 50.05) .
PSS(s)=2(1 i353)('11++s8%:7;5)2 o

The induction motor data are

Ra = 0.00667

Rr = 0.0143

Xo = 29

X' = 0.193

T(') .= 0.599

H = 0.50r5 seconds.

Appendix 4.Polar Plots of Input Signals of System 1 Used in

.

Stabilizer Design
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Appendix 5. Redundancy in the Rotor Swing State Variables

The automatic formation of the system matrices is carried
out in terms of the absolute deviations of the rotor speed and
angle state variables. As a consequence, the state matrix of a
power system without an infinite-bus will show either one or two
zero eigenvalues. One appears as a result of the redundancy in
rotor angle state variables, since the state of the system is defined
by the relative angular positions of the generator rotors, rather
than by their absolute values.

The other zero eigenvalue appears if turbo—generator
torques are all assumed independent of speed deviations. This
zero eigenvalue will not exist if a damping term is included in the
rotor motion equation of a single generator of the system or if
speed-governors are modelled. .

The redundancy in rotor angular position states can be

. eliminated by choosing the relative angular positions as the new

states. :

pA6l_ =0

(A5.1)
p Aer =wp ij _“"°A“"r

forje(1,2,...,1=1, r+1,..., ng), r being the reference generator.

33

The ‘second zero eigenvalue, if present, can also he
eliminated by choosing relative speed deviations rather than
absolute ones as the state variables.

R Aur =0
(AS.2)

1 y 1
Aw, = -~ —— AP_. + —— AP
p wj,. 2 Hj & o Hr er

The procedures described is cquations (A5.1) and (A5.2)
are actually similarity transformations [19]. The choice of one or
another machine as the angular reference is done by performing
different matrix similarity transformations. Similar matrices
have the same eigenvalues, and therefore the choice of one or
another gencrator as the angular reference {or even having no
angular reference) should theoretically be of no consequence to
the results.

The power system state matrix has a mixture of
well-conditioned and ill-conditioned eigenvalues. The two zero
eigenvalues are ill-conditioned and highly dependent on the
ex.ctness of the network solution ( the state matrix is singular
only if the network solution is exact). Normal power f{low
mismatch errors cause these eigenvalues to assume small values
around the origin, and in most instances one of them has a
positive real part. It was a wrong interpretation of this fact that
led some researchers {20] to believe that correct results could only
be obtained if a specitic generator in the system was chosen as the
angular reference. ’

It is always recommended to perform the similarity
transformation of equation (A5.1) so as to eliminate this
unwanted and ill-conditioned root. Expressing the equations in
terms of relative generator rotor speeds (equation A5.2) is
however not needed in our analysis.
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