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Abstract : This paper proposes an AC/DC benchmark system
Jor power system oscillation analysis and control, Detailed
results are described, in a tutorial manner, utilizing several
compiementary methodologies for linear dynaniical systems.
The paper contents are comirol oriented including aspects
such as choice of adequate feedback loops and coordinated
design of multiple controllers. Adequate oscillation damping
Is achieved by the use of stabilizing signals, designed through
Sfrequency response techniques and added to generator
excitation, HVDC links, Static VAr Compensators and othe,

FACTS devices. -
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1- INTRODUCTION

Some areas of power system engineering have long
adopted benchmark models to enable performance evaluation
of proposed algorithms, methodologies and computer codes.
There, apparently, has never been a coordinated effort to
develop a benchmark system for  small-signal
electromechanical stability. The IEEE Working Group on
System Oscillations, of the System Dynamic Performance
Subcommittee, is now supporting the development of some
benchmark systems. CIGRE has sponsored, through its
Power System Dynamics Performance and Analysis
Working Group (WG 38.02), several valuable contributions to
the small signal stability area [1,2,3]. It has also
recommended the development of powerful eigenvalue
programs for the analysis of small-signal stability of large
power systems [1).

The authors believe that Study Committee 38 should
now have the development of benchmark systems for small-
signal stability as one of its priorities.

The New England Test System [4] has naturally
become a sort of benchmark for multimachine small-signal
stability. This is a good reason to support the inclusion of new
dynamic components (HVDC links, SVC's, FACTS devices,
eic.) to obtain an updated New England benchmark,

The proposed AC/DC benchmark system of this
paper has many interesting features and the advantage of
being smaller than an updated version of the New England
system. This paper describes detailed results, utilizing several
complementary methodologies of linear dynamical systems,
concerning the oscillation analysis and control of the
proposed benchmark system.,

Non-linear time domain simulations were not
considered. The notations adopted in the paper are defined as
used, except for the well established symbols.

2 - THE PROPOSED BENCHMARK SYSTEM

The topology and parameters of the proposed system
were based on a reduced equivalent of the AC/DC Itaipu
transmission system. The one-line diagram of the system is
shown in Figure 1 and its full data are given in Appendix I,
so that every result of this paper may be reproduced.

Figure 1. Proposed AC/DC Benchmark System



The machines at buses 4 and 8 respectively represent
the ltaipu 60 and 50 Hz generation. The HVDC line and
control paramelers are very close to the actual values of the
Itaipu scheme, Hydro generators at buses 1, 2 and 3 have
typical parameters and machine at bus 10 represents a large
system equivalent. The system loads were modeled as
constant Z, [ and P as described in Appendix I

All generators were modeled as salient pole
machines having three rotor windings. The full set of
equations used to describe the synchronous generators are
given in [5], A simple first-order AVR model, depicted in
Figure 2, was made common to all machines. The AVR
gains are normally assigned values equal to the ratio
Kg /(2 Ty) [6]. The values used in the benchmark system are
lower than that, since this made the studies teporied here
more attractive,
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Figure 2. Excitation Control System

The HVDC link modeling is compatible with that
described in [7]. The constant gamma control at the inverter
station is approximately represented by Ay = 0. The constant
current controller at the rectifier station is represented
through the block diagram of Figure 3.
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Figure 3. Constant Current Controller at the Rectifler

Consider the operating point described in
Table Al-1, the HVDC link operation in constant current
control and the loads modeled as described in Table Al-4.
This system, in the absence of stabilizing signals, shows an
unstable pair of eigenvalues: A = + 0.450 + j 3.488. Table }
depicts the dominant eigenvalues, their damping factors (£)
and the dynamic components that contribute most to each
oscillatory mode, determined from participation factor
information [8).

Maximum
Eigenvalue & (%) Participation
Factor
+0,450 + | 3.488 - 12,78 Generator 10
- 0.240 + j 5,608 + 4,28 Generator 3
-1.805 + j 9,195 +19.26 Generator 2
=2.019 + j9.173 +21.49 Generator 1

Table 1. Dominant System Eigenvalues without Stabilizers

It is highly desirable to have a step response
simulation capability in a small-signal stability package, with
the ability to display any specified system variable [9,10]. In
the comparative analysis of the various stabilization schemes
considered in this paper, the step response results are always
shown for the same disturbance and set of monitored
variables.

Figure 4 shows the step response results for the
specified disturbance (+1% at the voltage reference of the
excitation control system of generator 4) and the chosen set of
monitored variables (voltage magnitude deviations at buses 4,
6, 7 and 8). The unstable mode (A =+0.450 1 j 3.488) is quite
evident in these plots.

oe

04

=

2

Voitage Deviation (pu)

o 1 2 3 4 L] ] 7 g 9 10
Time {seconds)

Figure 4. Step Response for the System without Stabilizers
(A =+0.450£j 3.488; A =0.240 +j 5.605)

Figure 5 shows the mode-shape of rotor speed
deviations relative to the unstable mode. The low frequency of
oscillation (0.56 Hz or 3.5 rad/s) and the large participation
of all system generators are characteristics of an inter-area
mode of oscillation. One can note that generators 1, 2 and 3
oscillate in a coherent manner and that generator 8 is the one
that oscillates least: the amplitude of its oscillation is only
about 2 percent of that of generator 10,
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Figure 5. Rotor Speed Mode-Shape for A = + 0.450 £F 3.488



The damping control of this unstable mode can be
obtained through the addition of stabilizing signals to the
excitation control systems of the generators or to the current
controller of the HVDC link. System damping can also be
achieved through a Static VAr Compensator properly located
in the system and adequately tuned, Another possibility is to
employ a FACTS device, such as the advanced series
compensator, properly located and tuned, to confer damping
to the critical electromechanical mode. All these stabilization
options will be investigated in this paper.

Rotor speed mode-shapes and  maximum
participation factors have been utilized as indicators of the
best places in the system for installing power system
stabilizers, These two measures will not be used here in favor
of more reliable indicators: transfer function residues and
transfer function zeros.

3 - CHOICE OF ADEQUATE CONTROL LOOPS AND
CONTROLLER DESIGN FOR SYSTEM
STABILIZATION

Transfer function residue information can be
efficiently calculated and arranged into ranking lists that
indicate the most effective dynamic components to damp a
particular system mode [11]. The choice of a generator to
install a power system stabilizer is based on a ranking list
containing the moduli of the residues for the transfer
functions Awi(sy/AV, is), i=l,..,ng (ng being the total
number of generators in the system). The generator with the
largest modulus of this ranking list is taken as the most
adequate for damping the specified mode.

Figures 6, 7 and 8 present, in phasor diagram
form, the ranking lists for A = + 0450 £ j 3.488
and transfer functions Awi(S)/AV,J(s) , APJ(s}AV, J(s)
and AFreqi(s)/AV,4(s), i=1,...,ng.
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Figure 6. Residues for Transfer Functions Acl(s)/4V, (s)
associated with A = + 0.450 1} 3.488
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Figure 7. Residues for Transfer Functions 4P /(s)/4 me’(s)
associated with A = + 0.450 £ 3,488
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Figure 8. Residues for Transfer Functions AFreq'(s)/4 V,.,f(s)
associated with A = + 0.450 2} 3.488

All these ranking diagrams indicate generator 10
and 4 as the two most appropriate to install power system
stabilizers to damp the unstabie mode. Generator 10 actually
represents a whole system area and, therefore, is not
considered eligible as a stabilizing source.

The transfer function residues for generator 8 have
very low moduli (below 0.1 percent in all the three cases
shown). This indicates that a power system stabilizer added to
generator 8 is ineffective in damping the unstable moede. This
happens mainly because the HVDC link constant current
controller would cancel out the electrical power modulation
produced by a stabilizer at generator 8. On the other hand, the
addition of a stabilizing signal directly to the HVDC link
controlier is effective in damping this unstable mode, as will
be seen in a later section of this paper.

A ranking diagram containing transfer function
residue information is of an incremental nature and does’ not
necessarily ensure system stabilization through the closure of
any given conirol loop. The complex plane location of
transfer function zeros of a given control loop provides
valuable extra information regarding the ease or difficulty
with which the system is controlled through this loop [5].

Table 2 presents the critical zeros for various transfer
functions considered for stabilization,

Transfer Function Critical Zero
Awd(s) / AV, F(s) +0,032 + j 4.812
Awl{(s) / AV (8 +0,716 % j 3.689
Ao?(s)/ AV, A(s) +0.650 £ j 3.645
Aw3(s) / AV (8 +0.699 = j 3.693
AP () / AV () +0.032 £ j 4.812
APA(s) / AT 3(s) +0,259 + j 3.545
AV, Hs) 1 A, 1) +0.078 £ j 5.097
AV, 7(s)/ AL, 4'(s) + 0,585 & j 3.966
AP, 45(s) / AL, 4(8) + 0,260 + j 3.541
AP,S7(s) / AL 41(8) +0,297 £ j 3.532
AFreqd(s) / Al 4 (s) +0,213 + j 3,576
AFreq’(s) / Al ,1(s) +0.551 & j 3.849

Tabie 2, Critical Zeros for Various Transfer Functions



The effectiveness of a given loop in system
stabilization can be properly evaluated through its frequency
response analysis, using either Bode or Nyquist plots. This
paper deals exclusively with Nyquist plots which are here
extensively used for controiler design [12].

Figures 9 and 10 show the Nyquist plots
of Aw*(syAV (s) and AV, 4(sY/AI (s), respectively. Note
that the critical zeros of these two transfer functions,
according to Table 2, are the least unstable ones, Despite the
badly located zeros, a visual analysis of Figure 9 indicates
system stabilization to be possible through the addition of a
properly tuned stabilizing signal to the excitation control
system of generator 4. An analysis of Figure 10 yields the
same conclusion regarding the HVDC link controller as a
stabilizing source. The design of these stabilizing signals is
the object of study in later sections.
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Figure 9. Nyquist Plot of Ay (s)/4 V’nf(s)
(A= + 0.450 £j3.488; Z = +0.032 2j4.812)
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Figure 10. Nyquist Plot of AV, (5)/Al ,, 45)
A=+ 045023488, Z =+ 0078 £;5.097)

3.1 - System Stabilization through the HVDC Link
Controller

In this paper, stabilizer design is carried oul utilizing
the Nyquist Stability Criterion. A brief description of system
stabilization through use of this criterion is presented in
Appendix II. Gain and phase compensation are here effected
by employing simple lead blocks of the type (1+saT)/(1+sT)
tuned as indicated in Appendix II

The open-loop system  has a pair of unstable
cigenvalues . = + 0.450 £ j3.488, and therefore closed-loop
stability is obtained by a counter<lockwise encirclement of
the -1 point by the Nyquist plot after compensation. Stabilizer
design, based on Figure 10, is obtained by multiplying AV, *
by a negative gain (to amplify and shift by 1809 the diagram)
and compensate a lag of 659 for frequencies about 3.5 rad/s.

Figure 11 shows the block diagram for the HVDC
controller stabilizer just designed, A washout block
is used to ensure damping action only during
transients with no influence on steady-state operation.
Figure 12 depicts the Nyquist plot of the open loop transfer
function (OLTF) AL, 4(s)/8l,4(s), showing the desired
counter-clockwise encirclement of the -1 point.
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Figure 11. Stabilizing Signal added to the HVDC
Constant Current Controller
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Fligure 12. Nyquist Plot of OLTF Al A3)/Al ., AS)
Table 3 presents the eigenvalues for the stabilized

system, where the least damped oscillation has a damping
factor (&) of about 10 percent,

Maximum
Eigenvalue E(%) FParticipation
Factor
- 0,323 £ § 3.238 +9.93 Generator 10
- 0.531 + j 4.877 + 10.83 Generator 10
- 1.800 + j 9,186 + 19,23 Generator 2
-2.007 +j9.177 +21.37 | Generator 1

Table 3. Dominant Eigenvalues for System with HVDC Link
Stabilizer

Figure 13 depicts the step response for the system
considering the action of the HVDC link stabilizer shown in
Figure 11.
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Figure 13. Step Response for System with HVDC Link
Stabilizer
fA=-0323 43238, A=-053144877)

3.2 - System Stabilization through a Static VAr
Compensator

Static VAr Compensators (SVC) can be effectively
used for power system oscillation damping control [13,14].
The definition of SVC location {11], choice of adequate
signals and stabilizer design are carried out in this section
through the analysis of transfer function residues, transfer

function zeros and frequency response plots.

The phasor diagram of Figure 14 shows the residucs
of the transfer functions AVbi(s}MBmi(s), i=1,...,nb (nb being
the total number of buses in the system) for
eigenvalue pair A= + 0.450 t j3.488. The symbols AV,
and AB,, i stand for bus voltage and shunt admittance
deviations at the i-th bus of the system. This figure shows
that bus 6 is the most adequate for installation of a SVC so as
to damp the unstable mode,

i 3
Figure 14. Residues for Transfer Functions AV,/(s)/4B,,,'(s)
associated with A = + 0.450 +j 3.488

The installation of a SVC, whose block diagram is
shown in Figure 15, yields the dominant eigenvalues depicted
in Table 4.
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- Figure 15. SVC Control Diagram

Maximum
Eigenvalue &%) Furticipation
Factors
+0,170 1 j 3.931 - 4,32 Generator 10
-0.208 + j 5.649 + 3.67 Generator 3
- 1,806 + j 9.169 + 19,27 Generator 2
-2.0191+j9.173 + 21,49 Generator 1

Table 4. Dominant Eigenvalues for System with SVC

The installation of a SVC at bus 6, whose controller
has the transfer function shown at Figure 15, increased the
system synchronizing torques and consequently the frequency
of the unstable mode. It, however, did not stabilize the system
and therefore it is necessary 1o include a stabilizing signal to
the SVC,

The listing of critical zeros, shown in Table 5, allows
the choice of a convenient system variable to be used as an

input to the SVC stabilizer. The symbol V& § genotes the
voltage reference to the SVC at bus 6,

Transfer Function Critical Zero
~0.354 £ j 5,309
Awd(s) / AVEES(y) :
-0.313 £ j 5,738

40'%s) 1 AVIES(s)

- 0,376 + j 7.532

AFreq(s) / AVES 6 ()

AFreq®)/ AV S(s) | . +22.18

AFreqts)  aVES | 0.312 £ j 5.797

AFreqi(s)/ AV™S) | - 0-396£)5.363

AFreq(y /aviesy | ORI HI6S
-0.313£)5.738

AP, 5195) / AVZE 6 (5)

-0.221 1  5.810
APLST(5) / AVETS(s) J

+0.447
APLT9(s) | AVEE S (s)

+0.431 £ ] 6.839

AP, 13(s) 1 AVES (s)

Table 5. Transfer Function Critical Zeros to Determine
Appropriate Input Signals to the SVC Strabilizer

Many transfer functions have good distribution of

zeros in the complex.planc, AFreqS(syAVES 6(s) included

(see Table 6). Variable AFreq®(s) was chosen as the input to
the SVC stabilizer for being a local signal.



Zero S8
-0.312 1 | 5.797 +5.37
-1.784 + j 9.143 +19.16
-0.832 + j4.236 +19.27
- 2,264 + j 10.86 +20.41
~ 1,988 + {9.173 +21.19

Table 6. Dominant Zeros of AFreq®(s)/4 V::f ¢

The frequency response plot of AFreq®(s)/A V;‘? 6l[s)
is shown in Figure 16,
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Figure 16. Nyquist Plot of AFreq®(s//aV,5¢ ° ()
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(A=+0.170 £73.931; Z=-0.312 2/ 5.797}

One can note, from Figure 16, that it is necessary to
compensate a phase lag of about 80° at frequency 3.9 rad/s
and adequately amplify the stabilizing signal. The resulting
design is shown in the block diagram of Figure 17. This
stabilizing signal turns the system stable as indicated by the
Nyquist plot of Figure 18 and by the eigenvalues presented at
Table 7. Figure 18 shows that the gain margin is infinite and,
therefore, there is no danger of high gain instabilities when
using this stabilizing signal. Practical limits to the value of
this gain should be determined from non-linear simulations
and the use of computer tools which take into consideration
the RLC transients of the network,
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Figure 17. SVC Stabilizing Signal at Bus 6
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Figure 18, Nyquist Plot of OLTF AV,,“‘(S)/AV,;.:“" )

. Maximum
Eigenvalue §0%) Participation
Factor
-0,302 £ j 5.786 + 5,20 Generator 3
-0,793 £ j 4.155 + 18.75 Generator 10
-1,790 +§ 9.148 +19.21 Generator 2
-1.991 19,170 + 21,22 Generator 1

Table 7. Dominant Eigenvalues with SVC at Bus 6
incorporating a Stabilizing Signal

Figure 19 shows the system time response for the
same disturbance and monitored variables as before.
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Figure 19. Step Response for System with SVC incorporating
a Stabilizing Signal
(A =-0.302£f5786 A=-0793+j4.155)

The use of a SYC or another FACTS device for the
sole objective of providing oscillation damping, despite being
technically feasible, is economically unacceptable. The
cheapest and most effective sources of oscillation damping in
practical power systems are the synchronous generators whose
excitation control systems incorporate properly tuned
stabilizing signals.

In large power systems, for reliability reasons, the
task of damping a critical mode of oscillation is not left to a
single dynamic component. There are also many cases in
which a single stabilizer is not capable of ensuring adequate
damping to a given inter-area mode. The reasons above call



for the simultaneous use of various, conveniently located,
stabilizers to damp the troublesome modes in the system. An
example of a sequential design of multiple stabilizers in the
proposed benchmark system is shown in the next section,

3.3 - Optimal Location and Controller Design for FACTS
Devices

Figure 20 shows the ranking list, in phasor diagram
form, of the major resicues for transfer
functions APKji(s)/ABkji(s), i=1,...,nl (nl being the total
number of AC lines in the system). The symbol APkj denotes
the transit power deviations in the line between buses k and j,
while ABkj denotes incremental changes in this line
susceptance.
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Figure 20. Residues for Transfer Functions Aij '(s)/ABKj'(s)
associated with A = + 0.450 41 3.488

The residue with the largest magnitude in Figure 20
is associated with the line between buses 7 and 9 pointing this
line as the most adequate for installation of an advanced
series compensator [15,16]. The second best candidate line is
that between buses 6 and 7, which was chosen in the study
presented in the next section,

FACTS devices should not be used in radial systems
to control line power flow, The authors have obtained results,
to be presented in another publication, showing that this
control strategy is detrimental to synchronous stability,

The present study considers the use of an advanced
series compensator, placed in line 6-7, which only acts as a
system oscillation damper. The device controller, shown in

Figure 21, was tuned to damp the critical mode
(A= +0.45 £ j 3.488),
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Figure 21. FACTS Device Control Diagram

The eigenvalues shown is Table 8, indicate the high
damping action exerted by of the FACTS device, regarding
the 3.5 rad/s mode. The other electromechanical mode of
5.3 rad/s becomes, however, very lightly damped. Residue
information points generator 3 as the best candidate to
stabilize this mode.

' Maximum
Eigenvalue &%) Participation
Factor
- 0.098 + j 5.359 + 1,83 Gencrator 3
- 1.B0S + j 9.195 +19.26 | Generator 2
-2.019+j9.173 + 21,50 Generator 1
-0.845 + j 3.238 + 25,24 | Generator 10

Table 8. Dominant Eigenvalues for System with
FACTS Device in Line 6-7

The frequency response plot of Aa3(s)/AV,,A(s) is
shown in Figure 22. The phase lag of 54° at 5.4 rad/s is
properly compensated by the stabilizing signal of Figure 23,
This signal turns the system more stable as indicated in the
Nyquist plot of Figure 24 and confirmed by the cigenvalues of
Table 9. Figure 25 shows the lincarized system step response
results for the chosen disturbance and monitored variables.
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Figure 22. Nyquist Plot of 40P (5)/AV, . (s)
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Figure 23, Stabilizing Signal for Generator 3
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Figure 24. Nyquist Plot of OLTF 4V,,’(s/4V, /2 (5)




Maximum
Eigenvalue & (%) Participation
Factor
- 0,633 +§ 5331 +11.80 Generator 1
-1,493 1+ § 11.00 +13.45 Generator 3
-1.843 £ j 9.205 + 19,63 Generator 2
-0,931 + j1.476 + 25.87 Generator 10

Table 9. Etgenvalues for System with FACTS Device in
Line 6-7 and Rotor Speed Stabilizer at Generator 3
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Figure 25. Step Response for System with FACTS Device in
Line 6-7 and Rotor Speed Stabilizer at Generator 3

4 - SEQUENTIAL DESIGN OF MULTIPLE
STABILIZING LOOPS

The most adequate locations for the stabilizers can
be determined from transfer function residue information.
Figures 6, 7 and 8 show three phasor diagrams of transfer
function residues for A =+ 0.450 + j 3,488, All three diagrams
point Generator 4 as the most indicated for the stabilization of
the 0.56 Hz mode. Generator 10, the one with the largest
residue magnitude, is disregarded for being an equivalent of a
whole system area. System stabilization will then be effected
through the installation of a stabilizer to the excitation control
of Generator 4. Two input signals will be considered: the
deviations in rotor speed (Aw?) and in terminal bus frequency

(AFreq®).

The dominant zeros and Nyquist plots of transfer
functions A@¥(s)/AV,#*(s) and AFreqi(s)/AV,(s) are shown
in Table 10 and Figures 9 and 26.

Aat(9)/aV, /() AFreq'(s)/aV,,/(s)
. +9,748
+0.032 £ j 4.812 - 0.200 + } 5,136
-1.807 +j9.187 -1.805 + j9.194
-2.017£j9.169 -2.019+j9.173
- 2.757 1 j 4.885 -1.357+ j2.614

Table 10. Dominant Zeros for Transfer Functions
80’ (5)/AV, A(5) and AFreq*(s)/4V, /A (s)

The compensated Nyquist plots for both transfer
functions are shown in Figures 28 and 29, The same stabilizer
parameters, shown in the block diagram of Figure 27, were
used in both cases. Note that the terminal bus frequency
signal (AFreq?) leads to a very narrow range of gain values
for stability being, therefore, inadequate, Problems with the
terminal bus frequency signal were previously reported in
[12] which showed it to be dynamically active at a higher
frequency range than the rotor speed signal.

The adjustment of the gain in the stabilizing loop is
made so as to satisfy two constraints: provide the necessary
damping to the mode of 3.5 rad/s without pushing the mode
of 12 rad/s into the unstable region. These considerations on
system conditional stability are made directly from the
analysis of the Nyquist plot of Figure 28,

The Root Locus plot of the critical system poles is
shown in Figure 30 for a variable gain in the generator
stabilizer derived from rotor speed (Aw?). One can note from
both root locus and Nyquist plots that two oscillatory modes
become unstable for higher gain values. The first instability
occurs at a frequency of 12 rad/s for gain values above 7.5.
The second unstable mode occurs at a frequency of 4.8 rad/s
for gain values in excess of 60.
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Figure 26. Nyquist Plot of AFreq*(s)/av*
(A =+ 04502j3.488; Z = +0. 032.‘!'}48
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Figure 27. Stabilizing Signal for the Generator at Bus 4
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Figure 30. Loci of Dominant Eigenvalues with Variable Gain
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at Generator 4 Stabilizer
- Electromechanical Mode
- Electromechanical Mode
- Exciter Mode of generator 4

Table 11 contains the dominant cigenvalues for the

system with a rotor speed stabilizing signal at generator 4.

' Maximum
Eigenvalue &%) Participation

Factor
=1.000 +§ 11,34 + 8,78 Generator 4
-0.427 £ j 4.780 +8.91 Generator 3

-0.366 + j 3.324 + 10,94 Generator 10
-1.812 +j9.182 + 19,36 Generator 2
-2.017 % j 9.166 +21.49 | Generator 1

Table 1. Dominant Eigenvalues for System with a Rotor
Speed Stabilizer at Generator 4

The generator 4 stabilizer damped the critical mode
(3.5 rad/s} oscillations up to a certain level. Further damping
could not be achieved due to exciter mode instability. The
reason for the early instability of the exciter mode is the large
phase advance of the stabilizing signal. This, however, was
necessary to compensate for the excessive phase lag imposed

by the badly located zero (Z =+ 0.032 + j 4.812) in the

Aw*(s)/AV, #4(s) transfer function.

The choice of a second stabilization loop is
mandatory to further dampen the critical mode. Figures 31
and 32 show residues of two transfer functions for the critical
eigenvalue pair A =-0.427 + j 4.780. These residues point
generator 3 as the second one to be equipped with a stabilizer.

I
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Figure 31. Residues for Transfer Functions Aaﬂ(s)/AV,.q‘(s)
associated with A = - 0.427 £ 4,780
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Fligure 32. Residues for Transfer Functions
AFreq'(s)/A V“/(s) associated with A = - 0.427 1 4.780

The simultaneous closure of two stabilizing loops
calls for the analysis of matrix, rather than scalar, transfer
function zeros. The transmission zeros concept [5] can be
used in this case to verify the ability of these two loops in
providing adequate system stabilization,



Table 12 presents the dominant transmission zeros
for two {2x2) transfer function matrices.

Transmission Zeros
Aa’(s)/4 V,.,_,‘(s) ae(sy/av, . As)
AdP(9/AV e 19 AaP(s)/a V,.,f(s)
- 1845+ j9.198 -
~1.259j5.178 -0.636  j 5.166
-2.158 1 j 6,308 -2,019+j9.171

Table 12, Dominant Transmission Zeros for (2x2)
Transfer Function Matrices

The stabilizer design for generator 3 is done based
on the Nyquist plot of Aw3(s)/AV,A(s) shown in Figure 33,
The open-loop system in this case is already stable and,
therefore, to promote greater oscillation damping the Nyquist
diagram should be compensated to encircle the +1 point in
the clockwise direction, with good gain and phase margins.
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Figure 33. Nyquist Plot of 4¢P (s)/4V, 4-’(5)
(A =-0.427 £ 4.780)

The calculated stabilizer parameters are depicted in

the block diagram of Figure 34, The compensated Nyquist
ot AV HSVAV (s) and the associated closed-loop system
enva.I;s are shown in Figure 35 and Table i3,

respecuvely

wlshout phase-led gain
2
3.0 1+80.3%
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Figure 34. Stabilizing Signal for Generator 3
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Figure 35. Nyquist Plot of OLTF AV 0> (5)/4V, 7 (5)
Maximum
Eigenvalue £0%) Participation
Factor
- 1.001+§11,28 +8.84 Generator 4
-0.372+}3.314 +11.14 (enerator 10
-1,297 +§ 11.36 +11.34 Generator 3
-.869 +j 4,673 + 18,28 Generator 10
- 1.846 + j 9,200 + 19,68 Generator 2

Table 13. Dominant System Eigenvalues
Generators 4 & 3 with Stabilizers of Figures 27 & 34

Figure 36 displays the step response for the sysiem
when having active stabilizers at generators 3 and 4.

0.018
— 001 4
E 0.005 4
g ;
0.005
s \f
00 A ——r VOB
> o0s4 T L
002 v r r T : .
0 1 2 3 4 - ] 7 8 9 10

Time {seconds}

Figure 36, Step Response for System with Active Stabilizers
at Generators 3 and 4
(A=-1. 2j11.3, A=-037%j331)

The choice of a third generator to be equipped with a
stabilizer could be effected in the same way as previously
described, so as to further damp the 0.5 Hz (¢=11.14%) mode.
In order to give a better tutorial flavour to this exercise the
third stabilizer will be added to the HVDC link controller,
This exercise is described in the next section.



4.1 - Design of the Third Stabilizing Loop Located at the
HVDC Link Controller

The control action of the third stabilizing loop will
be exerted by the HVDC current controller. The variable to be
used as the input to this stabilizer has not yet been chosen. A
pre-selection of best candidate variables can be made based on
modal observability analysis. The "mode-shapes” for signals
AFreq and AV, displayed in Figures 37 and 38, provide the
required observability information.

4
65
// 132 +¢
—
8 9 10
Figure 37. Mode-shape of AFreq associated
Wwith A=40372 13314
3 51 219 $
T
4 8

Figure 38. Mode-shape of AV, associated
withdA=-037223314

Table 14 contains the dominant transmission zeros
for various (3x3) transfer function matrices where only the
output of the third loop is varied. The third output of this
matrix transfer function corresponds to the HVDC link
stabilizer input, which is chosen based on the observability

information of Figures 37 and 38.
[F(s)]3x3 Dominant
Transinission
Input Output Zeros
Vit Viers Ioea? | ©%, 03, Freq’ -0.813 £ j 5,404
- 1.843 + j 9.200
Vet Vet Lea! | 0%, ©3, Freg® - 2,050 £ j 10.36
- 1,845 £ j 9.201
Vieth Vet Iord' | 0% 0%, V! - 0.467 + j 3.980
- 1.842 + ] 9.203
Vit Vet lond' | 04, @3, V8 - 0,933 + j 11.67
- 1.065 + j 6.121
Vith Viets Ira! || 0%, 03, V, 7 +3.783
- 1,844 + j 9.201

Table 14. Dominant Transmission Zeros for Various (3x3)
Transfer Function Matrices

The results of Table 14 indicate that, from the
transmission zeros viewpoint, all signals investigated
appeared to be adequate (only the AV,’ signal should be
object of some suspicion).
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It is good engineering practice te choose local
variables as inputs to system controllers. The variable AV, *
would be chosen on these grounds for being physically close
to the HVDC rectifier station. The variable AV, 6 was selected
as the stabilizer input based on its better behaved frequency
response plot which is shown in Figure 39,
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Figure 39. Nyquist plot of AV,5(s)/Al,,, [ (5)
(A=-0372473314)

The properly compensated Nyquist plot and the
parameters of the designed stabilizer are shown in Figures 40
and 41, .
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Figure 40. Nyquist plot of OLTF Al fs)/Al_ {s)
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Figure 41, Stabilizing Signal added 1o the HVDC
Current Controlier

The dominant system eigenvalues in the presence of
these three stabilizers (generators 3 & 4 and HVDC link) are
depicted in Table 15, Note that the originally unstable
eigenvalue pair ( A=+0.450 £ j 3.488) is now highly damped
(A=-0.714 £j 3.037).



Maximum : Maximum
Eigenvalue £(%) Participation Eigenvalue §(%) Participation

Factor Factor
-0,898 + j 12,02 + 7.45 Generator 4 ~1.166 £  11.13 + 10,40 Generator 3

-1.187+j11.31 + 10,44 Generator 3 -0.888 + j4.775 + 18.30 Generator 10

- 0,648 £ | 4.825 +13.32 Generator 10 -0,611 +j3.224 + 18.60 Generator 10
- 1,845+ j 9.199 + 19,66 Generator 2 -1,842 1+ j 9.196 + 19.60 Generator 2
-0.714 + j 3.037 + 22,89 [ Generator 10 -2.819 + § 9.577 +28.20 | Generator 4

Table 15. Dominant System Eigenvalues in the Presence of
Three Stabilizers

The step response of the system in the presence of
three stabilizers is shown in Figure 42, The exciter mode of
generator 4 (A=-0.89 t j 12.0) is excessively present in the
terminal voltage dynamic response. The overall design is
therefore judged not adequate.
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Figure 42. Step Response for System with Three Stabilizers.
(A=-089+£j12.0 A=-0.74 £ 3.03)

A round of sequential retuning was then carried out,
one-at-a-time, yielding the revised parameter settings shown
in Figure 43,
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Figure 43. Stabilizer parameters afler
one-loop-ai-a-time retuning

The results obtained, which were quite satisfactory, are
shown in Table 16 and Figure 44,
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Table 16. System Eigenvalues after
one-loop-at-a-time refuning
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Figure 44. Step Response for Systen: with Three Stabilizers
after one-ioop-ai-a-time retuning

5- CONCLUSIONS

This paper proposes a small benchmark system for
power system oscillation analysis and control, A benchmark
system is generally given in the form of a list of data and
simulation results. Power system oscillation analysis and
control involves the design of various stabilizing loops in an
interconnected AC/DC power system.

A decision was made to include not only the list of
designed stabilizer parameters, but also desctibe in detail the
adopted stabilizer design procedure, This gave the paper a
tutorial nature, which can be useful to those interested in
power systems control applications.

The authors have only utilized methodologies and
procedures with which they are familiar. There exist other
methodologies and procedures for stabilizer tuning in the
power system area, but they were not utilized.

The benchmark system here presented will enable
power system dynamics engineers to evaluate the performance
of their controller design methodologies and software.

The numerous results presented relate to the
following aspects: '



1- Investigation of small-signal electromechanical
stability and control interaction problems.

2- Determination of the most suitable generators in
the system for placing power system stabilizers.

3- Determination of the most suitable buses or lines
in the system for placing static VAR compensators
or advanced series compensators to damp system
oscillations.

4- Stabilizer design (generator, SVC, HVDC link,
FACTS devices) through frequency response
techniques.

5- Choice of control loops and combination of
signals best suited for power system stabilization.

6- Time response to a step applied to controller
setpoints,

There is no established methodology for the
simultaneous design of multiple controllers in large electrical
power systems. The conventional single-machine-infinite-bus
equivalent has worked well when tuning generator excitation
control stabilizers (PS8) in large systems. These stabilizers, in
a multimachine environment, usually show robust
performance and low dynamic interaction. This is not the case
with HVDC links, SVC's or any other FACTS devices, all of
which are inertialess equipment with a high speed of
response[17],

In a multiple FACTS environment, there may be a
high dynamic interaction between these devices and their
tuning must therefore be done in a more coordinated manner
[18). Multi-variable frequency response techniques may
provide a partial solution to this problem. Multiple pole
location technigues also show interesting possibilities.

This paper concludes by stressing the high benefits
of having a comprehensive linear analysis package for the
study of small-signal electromechanical problems [9,10,19].
A good package should allow the study of large power
systems, having a wide variety of components and controller
structures, in a CAE environment, where various linear
control methods can be used in a complementary manner,
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APPENDIX I: BENCHMARK SYSTEM DATA
System Frequency; 60 Hz; MVA Base: 100 MVA

Table Al-1, Bus Data

Bus Volfu'ge Generation
Modulus Angle MW MVAr

1 1.030 4.4 1658.0 -363.2
2 1.030 44.1] 1332.0 -146.9
3 1,029 43.5 1540.0 ~446.6
4 1.039 65.7 6500.0 2200.5
5 0.987 38.1 - -

6 0.974 38.3 - -

7 0.941 16.0 - -

8 1.000 0.0 5200.0 2591.2
9 1.112 7.1 - -

10 1.090 0.0 14921.0 -1475.4
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Table Al-2.Bus Loadings and Shunt Values

Bus Load Shunt
MW MVAr w
1 2405.0 -467.0 1.79
2 692.3 -184.0 1.49
3 688.2 -235.0 1.14
4 62.6 24.3 0.37
5 845.8 -9.2 0.33
6 -4.9 79.8 2.14
7 2884.0 =196.0 2.00
R - - -
9 230000 -9000.0 -
10 - - -
Table Al-3. Line Data
. l;_lno R X
From To %) (%)
__Bus Bus )
; 3 0.030 0.380
2 3 0.050 0.760
4 6 0.029 0.734
5 1 0,190 2,450
5 2 0,150 2,250
6 5 - 0,390
6 7 0.040 0,570
7 9 0.010 0.500
9 10 - 0.100
Table Al-4. Voltage Characteristics of System Loads
Bus Real Power (MW]
%P Y % Z
1 - 103.0 -
2 - 100,0 -
3 - 100.0 -
4 - - 100.0
5 - - 100.0
6 - - 100.0
7 - 100.0 -
9 25.0 - 75.0

The MVAr portions of all loads are modeted as 100% constant Z

Table Al-8. Machine Data

Generators
Parameter 118_. 2 3 448 10
MVA * 1944 6633 20000
T'do (s) 5.00 5.00 7.60 8.00
T"do (s) 0.053 0.06 0.09 0,09
T"qo(s) 0.123 0.09 0.19 0.20
H kWs/kVA) 4,50 4.50 5.07 5.00
Xd (pu) 0.85 0.88 0.90 1.00
Xq (pu) 0.70 0.69 0,68 .70
X'd (pu) 0.30 0.30 0.30 0.30
X"d (puw) 0.20 0.20 0,27 0.25
X"q g:)u) 0.20 0.20 0.27 0.25

(*) 1900 MVA for Generator 1 and 1400 MVA for Generator 2



Table Al-§. DC Line Parameters

Line Time
- Resistance Constant
From To (%) (s)
_Bus El.ll
1 2 4,5571 0.1333

Line resistance calculated for
Vbase = 2400 kV and Ibase = 2610 A

Table Al-7, Converter Station Data

(v o] Station Pdc Transt, Firing
| Bus (MW) Tap Angle ﬂ
1 Rectifier 52000 1,000 15.0
2 Inverter -5003.3 0.9622 17.0
APPENDIX II

IL1 - The Nyquist Stability Criterion

This section is very brief since this criterion is well
discussed in control theory textbooks. The Nyquist criterion
allows the assessment of the closed-loop stability of a
feedback sysiem from the knowledge of the open-loop transfer
function poles and its frequency response plot. Considering
the feedback system shown in Figure IL.1, the open-loop
transfer function (OLTF) is G(s) and the closed loop transfer
function is G(s) / (1+G(s)H(s)).

IN(=) QUT (s)

G (e)~

H (=)

Figure I1.1 - Feedback Control System

The Nyquist criterion establishes that: P, = P, + N,
where N is the number of clockwise encirclements of the
(-1,0) point of the complex plane made by the frequency
response plot of the OLTF as the applied frequency varies
from - to +c0. P, and P are the number of unstable poles
(eigenvalues) of the open-loop and closed-loop systems
respectively. These frequency response plots can be obtained
just for positive values of frequencies and in this case they
will encircle N/2 times the (-1,0) point of the complex plane,
Polar plots or Bode plots can be used to the same effect in this
analysis, but the former is preferred by the authors. The terms
polar plots and Nyquist plots are used indistinctly in the text,

The design of stabilizing signals applied to generator
excitation control systems, static VAr compensators, FACTS
devices and HVDC links can be carried out using Nyquist
plots. In all cases the power system transfer function is G(s),
which can be of high order depending on system size, and
H(s) is the transfer function of the stabilizing signal to be
designed.

Note: The stabilizing signal is normally considered as a
positive feedback (see Figures 11.2, I1.3, 114 and II1.5) but the
Nyquist stability criterion here applied is for the case of a
negative feedback. For this reason, all plots shown in the
paper were actually multiplied by -1,

IL.2 - Stabilizing Signal to the AYR

Figure I1.2 shows a block diagram which describes
the complete power system dynamics through the AVR
control loop. The blocks AVR(s) and PSS(s) correspond to the
transfer function of the automatic voltage regulator and the
power system stabilizer respectively, The functions Fy(s) and
Fy(s) relate the field voltage with the generator terminal
voltage and the system variable used as the input to the
stabilizer (V). The dynamic effects of the generator and
the others power system dynamic devices are considered in
F|(s) and Fy(s) , which are high order transfer functions. The
Nyquist plots shown in this paper are for the condition with
the voltage feedback loop (block Fy(s) in Figure I1.2) closed.

vt Autornet)
VOHI;‘oarlﬂlflﬂlﬂf - F1 (s)
Vref AVR (s |EN
Power > FZ ®
Systern Stabllizer

Vinp

PSS (8)

iy

Figure 1.2 « Power System Representation
Through the AVR Loop

- IL3 - Stabilizing Signal to the Static VAr Compensator
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Figure I1.3 shows a block diagram which describes
the complete power system dynamics through the static VAr
compensator control loop. The blocks SVC(s) and CSS(s)
denote the transfer functions of the static VAr compensator
and its stabilizing signal respectively. The blocks F3(s) and
F4(s) relate the compensator shunt admittance (B,) with the
controlled bus voltage (Vy,.) and the system variable used as
the input to the stabilizer (V). The Nyquist plots shown in
this paper are for the condition with the voltage feedback loop
(block F3(s) in Figure I1.3) closed.



Vbus

Static VAr
Compansator

Fy (8)

Bvar

Vref SVC ()

Compansator F4 (s)
Btabilizer

Vcsas Vinp

CSS (s)

-

Figure I1.3 - Power System Representation Through the
Static VAr Compensator

114 - Stabilizing Signal to the FACTS Device

Figure I1.4 shows a block diagram which describes
the complete power system dynamics through the FACTS
device control loop. The blocks FACTS(s) and FSS(s) denote
the transfer functions of the FACTS device and its stabilizing
signal respectively. The blocks Fs(s) and Fg(s) relate the
FACTS device output (Out) with the controlled system
variable (V uoeq) 8nd the variable used as the input to the
stabilizer (Vo). The FACTS device studied in section 5.1 is
- not a regulator, but just a power system oscillation stabilizer,
In this application, the diagram of Figure I1.4 is modified:
block Fs(s) does not exist, and the product FACTS(s).FS8(s)
is equal to the block diagram of Figure 40.

Vcontrolled

FACTS Device Fg (8)
Vref FACTS (s) Qut
FACTS Fg (3
Stabllizer
Vinp
| FSS (s}

Figure Il.4 - Power System Representation Through
the FACTS Device

IL.S - Stabilizing Signal to the HVDC Link

Figure IL5 shows a block diagram which describes
the complete power system dynamics through the HVDC link
control loop. The blocks DCC(s) and DSS(s) denote the
transfer functions of the HVDC link and its stabilizing signal
respectively. The blocks Fo(s) and Fg(s) relate the HVDC
link firing angle (o} with the DC link controlled current (I,)
and the variable used as the input to the stabilizer (Vinp). The
Ny«quist plots shown in this paper are for the condition with
the voltage feedback loop (block F4(s) in Figure 11.5) closed.
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Figure I1.5 - Power System Representation Through
the HVDC Link

IL6 - Gain and Phase Compensation for Power System
Stabilization

The procedure adopted in stabilizer design is to
initially deduce compensation circuit parameters only in
terms of gain and phase requirements at the frequency, in the
Nyquist plot, of the electromechanical mode to be stabilized.

Phase compensation is here effected through the use
of one or more phase advance units with transfer function

(

To minimize high frequency gain, which amplifies
the signal noise level and is detrimental to the damping of
higher frequency modes, the parameter g should be as small
as possible. The maximum phase lead angle (¢,,,,) obtained
with this phase advance unit is given by the expression:

= cin=] a~1
Grmax = Si0 (—a+l)

wherea > |

1+saT}
14sT

The time constant T determines the frequency o,
at which the maximum phase lead occurs:

1
e =T la

The parameter o is chosen by making the maximum
phase advance equal to the required phase shift at the
frequency of the electromechanical mode.



