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Abstract – The harmonic voltage performance of a
system depends on the location of its poles and zeros
mainly with respect to the critical harmonic frequencies.
Therefore the knowledge of the poles, zeros and their
respective sensitivities to system parameters enables the
identification of changes in the system which will reduce
harmonic voltage levels. The method presented in [1], [2],
based on state space formulation, allows this type of
knowledge. Unfortunately, the construction of the state
matrix for practical systems is not a simple task.
Furthermore, the method in [1], [2] presents some
limitations regarding network topology. This paper
presents a method based on the descriptor system approach
[3] which overcomes the computational difficulties
associated with the state matrix method. The method
properly deals with state variable redundancies and can be
efficiently applied to large-scale networks of any topology.
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1. Introduction
Current programs for harmonic analysis in electrical

systems require the inversion of the network admittance
matrix, computed for numerous discrete values of
frequency. This analysis is based on linear models and
makes use of the superposition theorem, when considering
multiple current harmonic sources [4], [5].

The main advantage of this method is that the
admittance matrix is quite straightforward to build. This
approach, however, does not allow the computation of the
sensitivity of the resonance frequencies to the network
parameters. Sensitivity analysis can play an important role
in the elimination of undesirable resonances in the
electrical system and as such it can be used as a powerful
tool in harmonic studies [1], [2].

The method described in references [1] and [2], based
on state variables, provides sensitivity analysis but the
construction of the state matrix for practical systems is not
a simple task. Furthermore the method assumes that two
nodes can only be interconnected by an inductive element
and that the capacitances are only connected between a
node and the ground. Another limitation is that a capacitor
bank must be modeled in every system bus.

The computational difficulties regarding the
construction of the state matrix can be overcome with the
use of the method proposed in [3], based on descriptor
systems. The method properly deals with state variable
redundancies and can be efficiently applied to large-scale
networks of any topology.

The theoretical basis, comprising system modeling,
harmonic impedance curves and sensitivity equations, will
be presented in the next sections. Finally, results on a
distribution system model will be described in order to
validate and show the efficiency of the method.

2. Network Modeling
The behavior of any electrical network obeys three

basic laws: Kirchoff law for currents, Kirchoff law for
voltages and the inherent characteristics of each network
element [6].

The Kirchoff laws contain the information on system
topology and are represented by algebraic equations
involving system variables (voltages and currents). Each
algebraic equation determines a linear dependence among
variables.

The system dynamics depends on the characteristic of
its elements. In general, first order differential equations, in
terms of currents and voltages, are used to represent
inductive and capacitive elements. In this way, the
inductive currents and capacitive voltages represent an
obvious choice of state variables.

However, the construction of a dynamic model for the
electrical network, based on state equations, is not so
simple. By definition, the states form a minimum set of
variables able to represent the dynamic behavior of a
system [7]. In this way, a minimum set of inductive
currents and capacitive voltages, which are linearly
independent, must be determined.

This difficulty can be overcome by using the descriptor
system (or partially dynamic system) to model the
electrical network [3]. The network modeling by descriptor
system uses all the inductive currents and all capacitive
voltages as state variables. The algebraic constraints given
by Kirchoff law for currents are also included in the model.

3. Single-phase RLC Series Branch
In general, the network modeling for studies regarding

harmonic problems is done considering only the positive
sequence network. For that reason, only single-phase
models are necessary. Three-phase modeling for harmonic
studies has been subject of research [8], but is not yet a
common methodology for real system studies.

The single-phase RLC branch presented in Fig. 3.1,
with frequency independent parameters, will be the basic
element for network modeling in this work.
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Fig. 3.1: RLC Series branch
The electrical behavior of this element can be described

by a set of two ordinary differential equations of first
order, as follows:

C
kj

kjjk V
dt

dI
LIRVV +⋅+⋅=− (3.1)

kj
C I

dt

dV
C =⋅ (3.2)

Equation (3.1) is general and holds for the particular
cases where L or R are zero. However, when the parameter
C does not exist in the branch, (3.2) must be replaced by:

0=CV (3.3)

4. Descriptor System for Single-phase RLC
Networks

In this work, a single-phase RLC network will be
represented by the interconnection of several elements like
that one shown in Fig. 3.1. For each element, (3.1) and
(3.2) can be written in matrix form as:
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where the current kjI  through the inductor and the voltage

cV  upon the capacitor were adopted as state variables. kV

and jV  are the voltages at nodes k and j, respectively. The

dot over the variable represents its time derivative.
If there is no capacitance, (4.1) must be replaced by:
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Note that transforming (4.1) into (4.2) is simply done by
setting the value of C to zero and exchanging the elements
in the last row of the state matrix.

It must be pointed out that kjI  in (4.1) is a current from

node k to node j, i.e., a positive current injection at j and
negative at k. The interconnection among the several
elements will be given by the equations regarding the
Kirchoff law for the current applied to each system node:
the algebraic summation of the injected currents at a node
must be zero. Therefore, the current kjI  must appear with

a positive signal in the equation for the currents regarding
the j node and with a negative signal in the equation
regarding the k node. If the branch is connected to the
ground )0or  0( == kj , the current through this branch
will only be present in one equation.

Therefore, the modeling of the electric network will
yield two differential equations for each system RLC
branch and an algebraic equation (regarding the Kirchoff
law for the currents) for each system node.

After modeling all RLC branches, the resultant
descriptor system will have the following matrix structure:
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Considering ln  as the number of RLC branches and

nn  as the number of nodes of the electric network, then

1A  and 1T  have dimension ll nn ⋅×⋅ 22 , 2A  and 0 have

dimension nl nn ×⋅2 , 3A  has dimension ln nn ⋅× 2  and I

and q0  have dimension nn nn × . The vector 1x  has

dimension ln⋅2  and nodalv  and nodali  have dimension

nn .

1T  is a diagonal matrix and 1A  is block-diagonal, 2A

and 3A  are “incidence matrices” for the descriptor system.

Symbols 0 and q0  denote zero matrices and I is the

identity matrix.
The matrix equations (4.3) and (4.4) can be written in a

more compact form as:
uBxAxT ⋅+⋅=⋅ & (4.5)

xCy ⋅= (4.6)

where:
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nodaliu = (4.11) nodalvy = (4.12)

Matrices A and T have dimension
( ) ( )nlnl nnnn +⋅×+⋅ 22 , B has dimension

( ) nnl nnn ×+⋅2  and C has dimension ( )nln nnn +⋅× 2 .

Vector x has dimension ( )nl nn +⋅2  and y and u have

dimension nn .

5. Harmonic Impedance seen from a System Node
Applying the Laplace Transform to (4.5), one has:

( ) UBATX ⋅⋅−⋅= −1s (5.1)

where X and U are the Laplace transforms of x and u,
respectively.

The system impedance matrix, Z, is defined by:
UZY ⋅= (5.2)

where Y is the Laplace transform of y.
Applying the Laplace transform to (4.6), one has:

XCY ⋅= (5.3)
Substituting (5.1) in (5.3), one has:

( ) UBATCY ⋅⋅−⋅⋅= −1s (5.4)

From (5.2) and (5.4), one has:

( ) BATCZ ⋅−⋅⋅= −1s (5.5)
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The self impedance seen from node k is given by the

kkZ  element of the Z matrix. However, in accordance with
(5.5) and with the equations numbered from (4.7) to (4.10)
(definition equations of A, B, C and T), one concludes that
the kkZ  element is equal to the ( )knl +⋅2  diagonal

element of ( ) 1−−⋅ ATs . Thus:

( )[ ] ( )knkk l
Z +⋅

−−⋅= 2
1  sdiag AT (5.6)

On the other hand, the inverse of ( )AT −⋅s  can be
given by:
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Consider kT  and kA  as the matrices obtained by

canceling the knl +⋅2  row and column of the matrices T

and A, respectively. Thus, the knl +⋅2  diagonal element
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( )[ ] ( )
( )

( )AT

AT
AT

−⋅
−⋅

=−⋅= +⋅
−

s

s
Z kk

knkk l det
det

  sdiag 2
1 (5.8)

Equation (5.8) is a generalization of its counterpart
presented in [1] and [2]. It shows that:
• The system poles correspond to the generalized

eigenvalue problem associated with the matrix pair
{ }TA  , :

( ) iiis vTvAAT ⋅⋅λ=⋅⇔=−⋅ 0det (5.9)

• The zeros, associated with the self impedance of node
k, correspond to the generalized eigenvalue problem
associated with the matrix pair { }kk TA  , :

( ) ikiikkks vTvAAT ⋅⋅λ=⋅⇔=−⋅ 0det (5.10)

where iλ  are the generalized eigenvalues associated

with the pair { }TA  ,  or { }kk TA  ,  and iv  are their
associated generalized eigenvectors.

6. Example of Electric Network Modeling
A simple RLC circuit with state redundancy (see Fig.

6.1) will be used to describe the network modeling, by
means of the descriptor system technique.
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Fig. 6.1: RLC Circuit with state redundancy
The state redundancy of this RLC circuit was

artificially introduced by splitting its inductance into two
parts.

It must be pointed out that the RLC circuit shown in
Fig. 6.1 is a particular case of the RLC circuit shown in
Fig. 6.2. When 12C  and 2C  are neglected and

0211 === RLR , CC =1 , RR =12 , LL =12  and LL ′=2

the circuit shown in Fig. 6.2 becomes equivalent to that
shown in Fig. 6.1.

For an easier understanding, the modeling of the circuit
shown in Fig. 6.1will be derived from the modeling of the
circuit shown in Fig. 6.2.

In this modeling, the inductive currents and capacitive
voltages are chosen as state variables. A matrix equation in
the form of (4.1) is written for each branch. The branch
connections are taken into account by the Kirchoff law for
the currents applied to the circuit nodes.

For the circuit shown in Fig. 6.2 one has:

0121 =−− LL IIi (6.1)

0212 =− LL II (6.2)
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Fig. 6.2: Generalized RLC circuit
Joining the matrix equations relative to each circuit

branch and (6.1) and (6.2), yield:
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The node voltage vector is given by:
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The model of the circuit shown in Fig. 6.1 is
accomplished simply by setting 0211 === RLR  and
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neglecting 12C  and 2C  which, regarding the items 3 and
4, implies in modifying (6.3) to:
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where
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The dynamic model of the circuit shown in Fig. 6.1, is
therefore, given by (6.4) and (6.5), considering the
relations given in (6.6).

7. Eigenvalue Sensitivity

Considering nλλλ ,  , , 21 K  as the generalized

eigenvalues associated with the matrices { }TA  , , one has:

iii vTvA ⋅⋅λ=⋅ (7.1)

where iv  is the right (column) eigenvector of { }TA  ,

associated with the eigenvalue iλ .

Similarly, the left (row) eigenvector iw  associated with

the eigenvalue iλ  can be defined by:

TwAw ⋅⋅λ=⋅ iii (7.2)

Differentiating (7.1) with respect to jα  (a system

parameter) yields:

j

i
ii

j
ii

j

i

j

i
i

j α∂
∂

⋅⋅λ+⋅
α∂

∂
⋅λ+⋅⋅

α∂
λ∂

=
α∂

∂
⋅+⋅

α∂
∂ v

Tv
T

vT
v

Av
A (7.3)

Premultiplying (7.3) by iw  and using (7.2), one
obtains
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where:

iiiC vTw ⋅⋅= (7.5)

Equation (7.4) is a generalization of the well-known
sensitivity equation for the eigenvalue iλ  with respect to a

system parameter jα  [1], [2].

In most cases, the normalization of the sensitivities is
useful. This is obtained by multiplying the eigenvalue

sensitivity 
j

i

α∂
λ∂

 by the system parameter jα  [1], [2].

Let 0
jα  be the initial value of the system parameter jα .

Thus the variation of the eigenvalue iλ  as a function of the

parameter variation jα∆  and of the normalized sensitivity

is given in a first approximation by:
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The symbol ( )0
j
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 denotes that the eigenvalue

sensitivity has been computed for a parameter value of 0
jα .

Equation (7.6) can be easily generalized for
simultaneous variation of several system parameters.

8. Test System
The test system utilized has been taken from [2], and is

shown in Fig. 8.1.
This system can be modeled by the interconnection of

several series RLC branches, as shown in Fig. 8.2.
The system frequency is 50 Hz and the values of its

elements are given in Table 8.1. 12L  and 12R  represent the
inductance and resistance of the equivalent series
association of the line LT 1-2 with the transformer T2.
Similarly, 13L  and 13R  represent the inductance and
resistance of the equivalent series association of the line
LT 1-3 with the transformer T3.

node 1

node 2 node 3
T3 (MV/LV)T2 (MV/LV)

T1 (HV/MV)

TL 1-2 TL 1-3

H V  S y s t e m
Equivalent

Vth

Lcc

Ih2 Z2
C2 Z3 C3

C1

Ih3

Ih1

Fig. 8.1: Test system
Vth : Thévenin voltage.
Lcc : Short-circuit inductance of the HV system.

T1 : HV/MV Transformer.

T2, T3 : MV/LV Transformers.

TL 1-2 : Transmission line connecting node 1 to transformer T2.

TL 1-3 : Transmission line connecting node 2 to transformer T3.
C1, C2, C3 : Capacitor banks connected to nodes 1, 2 and 3, respectively.

Z2, Z3 : Load impedances connected to nodes 2 and 3, respectively.

Ih1, Ih2, Ih3 : Harmonic current sources connected to nodes 1, 2 and 3,
respectively.
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node 1

node 2 node 3

Lcc

L12

R12

R2 L2
Ih2 Ih3 L3 R3

R13

L13

Ih1

C2 C3

C1

Fig. 8.2: System modeling
Table 8.1: System parameter values

Inductance (mH) Resistance (Ω) Capacitance (µF)

ccL 8.0 2R 80.0 1C 23.9

2L 424.0 3R 133.0 2C 8.0

3L 531.0 12R 0.46 3C 11.9

12L 9.7 13R 0.55

13L 11.9

The matrices A and T have dimension nl nn +⋅2 ,

where ln  represents the number of RLC branches and nn
the number of nodes of the electric network. For the test
system, the order these matrices is 23. The sparse structure
of the generalized state matrix (A), for the test system, is
depicted in Fig. 8.3.

The constant nz represents the number of nonzero
elements, and is shown at the bottom of Fig. 8.3.

0 5 10 15 20

0

5

10

15

20

nz = 48

Fig. 8.3: Sparse structure of matrix A for Test System
8.1 Calculation of Poles, Zeros and Sensitivities

Although the order of the matrices A and T is 23, the
test system is actually of eighth-order. Therefore, 15
generalized eigenvalues of infinite modulus corresponding
to the algebraic equations are obtained.

For matrices kA  and kT  there are also 15 generalized
eigenvalues of infinite modulus but only 7 of finite
modulus. The values of the finite generalized eigenvalues
associated to { }TA  ,  (poles) and to { }3,2,1 , , =kkk TA
(zeros), are shown in Table 8.2.

The frequencies of poles (parallel resonance) and zeros
(series resonance), given by the imaginary part of the
complex conjugate eigenvalues, and their sensitivities with
respect to the inductances and capacitances of the studied
system are presented in Table 8.3. Note there is a 2π factor
between the frequency values shown in Table 8.2 and
Table 8.3, since the latter is given in Hz.

Table 8.2: Generalized eigenvalues

{ }TA  , { }11  , TA { }22  , TA { }33  , TA

-345.9
± j4535.6

-338.5
± j2670.9

-93.7
± j3975.6

-398.4
± j4424.9

-507.0
± j3069.1

-804.4
± j3550.6

-255.5
± j2084.9

-415.3
± j2402.1

-290.1
± j1583.6

-1.0 -26.2 -27.8

-1.0 -1.1 -1.0 -1.0
-1.0 0.0 0.0 0.0

Table 8.3: Resonance frequency sensitivities

Zeros
Poles

Node 1 Node 2 Node 3

1 2 3 1 2 1 2 1 2

f(Hz) 252 488 722 425 565 332 633 382 704

ccL 633 68 312 0 0 302 501 550 292

2L 18 22 11 0 41 0 0 33 15

3L 22 12 1 30 0 29 5 0 0

12L 11 493 1551 0 1820 248 415 232 1819

13L 119 949 492 1324 0 470 1080 368 199

1C 284 74 1295 0 0 237 1523 533 1188

2C 158 732 697 0 1689 0 0 685 912

3C 339 719 178 1317 0 799 452 0 0

It must be pointed out that all the results presented here
are in good agreement with those presented in [2].

8.2  Shifting Poles and Zeros
As shown in Table 8.3 the pole 1 is located at 252 Hz.

It can cause problems at any system bus since an injection
of fifth-harmonic current can generate high levels of
harmonic distortions.

A possible solution consists in bringing the zero 1 seen
from node 2 closer to the frequency of 250 Hz.

The highlighted sensitivity results in Table 8.3 indicate
that changes in parameter 3C  will cause the largest shifts
in the chosen zero.

Using (7.6) a value of F  56.193 µ=C  was obtained.

The impedance magnitudes seen from bus 2 associated
with the original and the new value of 3C  are shown in
Fig. 8.4.

The frequencies of the poles and zeros, for the new
value of 3C , are presented in Table 8.4. As shown in this
table, the frequency of the pole 1 seen from node 2 is
270 Hz instead of 250 Hz. A more accurate technique for
shifting poles and zeros based on Newton-Raphson method
is currently being developed.
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For this new value of 3C  there was a reduction of 47%
in the impedance magnitude at 250 Hz.

Table 8.4: New frequencies of Poles and Zeros

Zeros
Poles

Node 1 Node 2 Node 3

1 2 3 1 2 1 2 1 2

f(Hz) 221 442 713 332 565 270 606 382 704
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Fig. 8.4: Impedance modulus seen from node 2

9. Conclusion
The state space method [1], [2] and the proposed

descriptor system method allow obtaining all the results
produced by the traditional method which is based on
nodal admittance matrices computed at various discrete
values of frequency within the range of interest.
Furthermore, these methods allow:
• Identification of elements mostly involved in specific

resonances.
• Determination of the necessary changes in system

elements in order to shift the location of poles and/or
zeros to desired positions.

• Optimum allocation of capacitor banks and/or passive
filters.

The state space method in [1], [2] has, however, some
limitations regarding its ability to model practical
networks. The proposed descriptor system method
overcomes these limitations and offers the following
advantages:

• Simple and efficient computational implementation.
• Ability to model systems of any topology and

containing state variable redundancies.
• Applicability to large-scale networks, due to the very

sparse matrices involved and the availability of
powerful sparse eigensolution algorithms applied to
descriptor systems [3], [9], [10].
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