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System Equations Linearized at Singular Point X0
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Basic Equations for the Hopf Algorithm
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•λspec is the specified value for a complex pole, to be reached 
through an appropriate change to the system parameter “p”

•The second equation defines the norm of the eigenvector “v”

•Solution by Newton-Raphson
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Small-Signal Stability and Security Boundaries
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Non-Linear Equations for Security 
Boundary (Modified Hopf) Algorithm
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Matrix Problem to be Solved at Every Iteration
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Compact Form for Hopf Equations 
Involving the Prior Factorization of the 

System Jacobian Equations
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Hopf Bifurcations

• Compute parameter values that cause critical eigenvalues to 
cross small-signal stability boundary

• Hopf bifurcations are computed for:

– Single-parameter changes 

– Multiple-parameter changes  (minimum distance in the 

parameter space)
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Experience with Inter-Area Oscillation 
Problems (1/2)

1984Taiwan
1982-1983Western Australia

1978Scotland-England
1975South East Australia

1971-1974Italy-Yugoslavia-Austria
1971-1970Mid-continent Area Power Pool (MAPP)
Late 1960’sSweden-Finland-Norway-Denmark
1964-1978Western USA (WSCC)
1962-1965Saskatchewan-Manitoba-Ontario West

1959Michigan-Ontario-Quebec
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Experience with Inter-Area Oscillation 
Problems (2/2)

2000Brazilian North-South
1998South-African Cone
1998Argentinean Interconnected System (SADI)
1992Venezuela-Colombia Interconnection
1986Brazilian North-Northeast
1985Ontario Hydro

1985-1987Southern Brazil

1985Ghana-Ivory Coast

Original slide from Dr. Prabha Kundur, with the
last five additions by the authors
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North-Northeast Interconnection (1988)
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Brazilian N/NE Interconnection
Spontaneous oscillations controlled by operator through MW reduction

Tucurui's Power Plant Recordings (N/NE System)

0 1 2 3 4 5 6 7 8 9 10

Vt=4%

Pe=190 MW

1 s

Efd = 200 V

Peo= 1550 MW

Vto=104%

Time in seconds (s)

Oscillation problem later solved via PSS retuning



Section 7.9 of CIGRE TF 38.02.16 Document
“Impact of the Interaction Among P. System Controls”

Field Tests to Determine the Effectiveness of 
the TCSC Controllers in Damping the 

Brazilian North-South Intertie Oscillations

C. Gama                 L. Ängquist G. Ingeström M. Noroozian
Eletronorte ABB
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The North-South Brazilian Interconnection
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TCSCs Located at the Two Ends of the North-
South Intertie
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System Staged Tests – no PODs on 2 TCSCs
Brazilian North-South System goes Unstable!
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System Staged Tests – with 2 PODs
Brazilian North-South System is now stable
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Large-Scale, Decentralized Oscillation  
Damping Control Problem
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Hopf Bifurcations – Test System Utilized

• System Data:
– 2400 buses, 3400 lines/transformers, 2520 loads
– 120 generators, 120 AVRs, 46 PSSs, 100 speed-governors
– 1 HVDC link (6,000 MW)
– 4 SVCs
– 2 TCSCs

• Jacobian Matrix:
– 13.062 lines
– 48.521 non-zeros
– 1676 states
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Hopf Bifurcations – Test System Problem

• The TCSCs are located one at each end of the North-South intertie
and are equipped with PODs to damp the 0.17 Hz mode 

• The Hopf bifurcation algorithms were applied to compute 
eigenvalue crossings of the security boundary (5% damping ratio)
for simultaneous gain changes in the two PODs
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Eigenvalue (Pole) Spectrum for Brazilian 
North-South System (1,676 eigenvalues)

Poles in window near the origin are shown enlarged in next  slides
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North-South System with no TCSCs

Interarea Mode: λ = −0,0335 + j 1,0787 (f = 0,17 Hz, ζ = 3,11 %)

Step Response (N-S Tie line Power)
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North-South System with 2 TCSCs

Inter-area mode without TCSCs: λ = −0,0335 + j 1,0787 (ζ = 3,11%)

Inter-area mode with TCSCs:      λ = −0,318 + j 1,044 (ζ = 29,14 %)
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Computation of S. Signal Stability Boundaries

• Different algorithms, heuristics,  parameter limits and boundaries
– Change of a single parameter (Newton)
– Change of multiple parameters (Lagrange)
– Step-length control
– Maximum and minimum limits for parameter values
– Small-signal security boundaries

• Cases investigated by the authors
– Simultaneous change in the gains of  the 2 TCSCs
– Independent changes in the gains of the 2 TCSCs
– Varying other system parameters
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcation Results
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Hopf Bifurcations Results

• Two crossings of the security boundary were found, for POD 
gains far away from the nominal values (Knom = 0.6 pu):

2.1172 > K > 0.0647

• Computational cost of Hopf bifurcation algorithm

– Single-parameter changes : 0.16 s (per iteration)

– Multiple-parameter changes : 0.35 s (per iteration)
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Step Responses for Different TCSC Gains: 
Knom = 0.6 and Kmin = 0.06471

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.

0.1

0. 5. 10. 15. 20.
Time (s)

Nominal Gain Minimum Gain

ξ = 5 %

Freq = 0.171 Hz 



61

Step Responses for Different TCSC Gains:
Knom = 0.6 and Kmax = 2.1172
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Jacobian Matrix for Brazilian System Model 
(13, 062 equations with 48,626 non-zeros )
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Eigenvalue (Pole) Spectrum for Brazilian 
North-South System (1,676 eigenvalues)
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Hopf Matrix and its LU Factors (26,127 lines)

256,915 non-zeros108,288 non-zeros
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Convergence Performance of the Hopf 
Algorithm (Kmin Solution)

0.0647119-0.053749 + j 1.07366
0.0647119-0.053749 + j 1.07365
0.0646849-0.053750 + j 1.07364
0.0596167-0.053862 + j 1.07593

0.00911156-0.055743 + j 1.11352
0.264483-0.049219 + j 0.983151
0.600000-0.31793 + j 1.04370

Gains of the two PODsEigenvalue EstimateIteration
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Convergence Performance of the Hopf 
Algorithm (Kmax Solution)

52.11725-0.024789 + j 0.495167
52.11759-0.024790 + j 0.495186
52.04841-0.024886 + j 0.497105

11.301.59247-0.059773 + j 0.525494
21.301.14716-0.12364 + j 0.567103
31.300.864511-0.19803 + j 0.600872
41.300.727598-0.28045 + j 0.618411
51.300.600000-0.34641 + j 0.579610

ζ (%)POD GainsEigenvalue EstimateIteration
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Pole Spectrum of 1,676-State System

Small window near the origin is shown enlarged in next 3 slides
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Enlarged View of Small Window in the 
1676-Pole Spectrum, for  Knom = 0.6
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-0.31793 + 1.04375j



69

Enlarged View of Small Window in the 
1676-Pole Spectrum, for  Kmin = 0.06471
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Enlarged View of Small Window in the 
1676-Pole Spectrum, for  Kmax = 2.1172
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Conclusions 

• Developed Hopf algorithm showed robust performance for large-
scale systems

• Ensuring that all crossings of the security border have been 
determined is not an easy task for large-scale problems

• Finding the closest bifurcation point in the multi-parameter space 
requires optimization techniques (Minimum Distance to Hopf)

• Hopf algorithms and  Minimum Distance to Hopf algorithms 
may be useful in the design of  decentralized, non-linear 
controllers in power systems

• The authors have also been applying these algorithms to other 
problem areas.
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