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SUMMARY 

The HarmZs program has been developed for the 
analysis of harmonic problems in power systems. This 
program makes use of modal analysis that provides 
additional dynamic information on electrical networks 
that may be effectively used to improve their harmonic 
performance. HarmZs also obtains the results produced 
by the conventional harmonic analysis method, which is 
based on nodal admittance matrices computed at various 
discrete values of frequency within the range of interest. 
This paper describes some aspects and concepts of the 
conventional and modal analysis of electrical networks 
as well as highlights some important features of the 
HarmZs program related to graphical interface and 
network/equipment modeling. 

Keywords: harmo nics, modal analysis, descriptor 
systems, state-space, transfer function, frequency 
response. 

1 INTRODUCTION 

The HarmZs program [1] utilizes two recent electrical 
network-modeling technologies, named Descriptor 
Systems [2]-[6] and Y(s) matrix [6]-[12], that allow 
electrical network analyses over all the complex plane s 
instead of just over the imaginary “jω” axis. The 
expanded domain of modal analysis provides an 
important set of dynamic system information that is 
hard to obtain through use of the two conventional 
methods: time simulation and frequency response. The 
information provided by modal analysis includes the 
natural oscillation modes, identification of equipment 
that more heavily participate in these modes, modal 
sensitivities with respect to parameters changes, etc. 
This additional dynamic information may be effectively 
used to improve the harmonic performance of electrical 
netwo rks [3]-[8], [13], [14]. The program also obtains 

all the results produced by the conventional frequency 
domain method, which is based on nodal admittance 
matrices computed at various discrete values of 
frequency within the range of interest [15]-[18]. 

Some basic concepts of the conventional and modal 
analysis methods are reviewed in this paper using a 
simple electrical system. Details of electrical network 
and equipment modeling and some features of the 
graphical interface are also described in the paper. 

2 NETWORK MODELING TECHNIQUES 
SUITABLE FOR MODAL ANALYSIS 

The state-space model of electrical networks comprises 
a set of ordinary first-order differential equations that 
describe the dynamic behavior of the inductive and 
capacitive elements [19]. The inductive currents and 
capacitive voltages constitute the system state variables. 
The state-space equations describing a linear system 
(electrical network) can be generically written as: 

( ) ( ) ( )ttt uBxAx +=&  (1) 

( ) ( ) ( )ttt uDxCy +=  (2) 

where x is the state variable vector, x&  the time 
derivative of x, u the input variable vector, y the output 
variable vector, A, B, C and D constant matrices, A 
being the system state matrix.  

The system states are defined as the minimum set of 
variables that fully describe the dynamic behavior of the 
system [19]. Therefore, a minimum set of linearly 
independent inductive currents and capacitive voltages 
must be determined. The available techniques to 
determine this minimum set of states involve an 
elaborate topological analysis of the electrical circuit 
which turns the construction of the A matrix into a 
difficult task. These difficulties are eliminated when 



using the network-modeling techniques implemented in 
the HarmZs program, which are explained in the 
following sub-sections. For the sake of brevity and 
clarity, only networks having basic RLC components 
are described. However, more complex components 
such as long transmission lines [2], [10], [11] and three 
winding transformers [8] are also properly considered in 
HarmZs. 

2.1  Descriptor System 

When modeling electrical networks by the descriptor 
system technique all inductive currents and all 
capacitive voltages are assumed to be state variables. It 
must be pointed out that all methods (eigensolution 
methods, for example) used in conjunction with the 
descriptor system model must properly deal with state 
variable redundancies. Consequently, there are indeed 
no restrictions in using a set of state variables that is not 
a minimum set. In addition to the differential and 
algebraic equations that describe the behavior of each 
circuit component, the Kirchhoff’s current law (KCL) 
must be written for each circuit node. The KCL 
equations define the electrical connections among the 
several circuit elements. In other words, the KCL 
equations define the network topology. 

RLC Series Branch 

A RLC series branch connected between the nodes 
(buses) k and j is depicted in Figure 1. 

R L C

k jikj

vC  
Figure 1: RLC series branch 

The dynamic behavior of this element is described by a 
set of two ordinary differential equations of first order: 

C
kj

kjjk v
dt

di
LiRvv ++=−    (3) 

kj
C i

dt
dv

C =  (4) 

where vk and  vj are the voltages of nodes k and j, 
respectively. The element variables are the branch 
current kji  and the capacitor voltage vC. When there is 

no capacitor in the branch, (3) and (4) reduce to a single 
equation: 

jk
kj

kj vv
dt

di
LiR −=+  (5) 

Note that in the absence of the capacitor, kji  is the only 

variable in the series branch. 

 

 

RLC Parallel Branch 

A RLC parallel branch connected between the nodes k 
and j is depicted in Figure 2. 
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Figure 2: RLC parallel branch 

The dynamic behavior of this element is described by: 

kj
C

L
C i

dt
dvCi

R
v =++  (6) 

C
L v

dt
di

L =  (7) 

jkC vvv −=  (8) 

where vk and  vj are the voltages of nodes k and j, 
respectively. The element variables are the branch 
current kji , the capacitor voltage vC and the inductive 

current iL. When there is no inductor in the branch, (6) 
and (7) reduce to a single equation: 

kj
CC i

dt
dvC

R
v =+  (9) 

Note that in this case there are two variables, kji  and vC, 

in the parallel branch. 

The descriptor system modeling may be better explained 
through an example utilizing the test system pictured in 
Figure 3. 
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Figure 3: test system 

Vth: Thévenin voltage. Lcc: Short-circuit inductance of the HV 
system. T1: HV/MV transformer. T2 and T3: MV/LV 
Transformers. TL 1-2: transmission line connecting bus 1 to 
transformer T2. TL 1-3: transmission line connecting bus 1 to 



transformer T3. C1, C2, and C3: capacitor banks connected to 
buses 1, 2 and 3, respectively. Z2 and Z3: load impedances 
connected to buses 2 and 3, respectively. Ih1, Ih2, and Ih3: 
harmonic current sources connected to buses 1, 2 and 3, 
respectively. 

This test system can be modeled by the interconnection 
of several RLC branches as shown in Figure 4. 
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Figure 4: Test system modeling 

The symbols 12L  and 12R  denote the inductance and 
resistance of the equivalent series association of the line 

TL 1-2 with the transformer T2. Similarly, 13L  and 13R  
represent the inductance a nd resistance of the combined 
series impedances of the line TL 1-3 and the transformer 
T3. The impedance loads 2Z  and 3Z  are modeled as 

shunt reactors ( 2L  and 3L ) in parallel with shunt 
resistors ( 2R  and 3R ). 

The descriptor system matrix equations for the test 
system are shown at the bottom half of this page. These 
equations are easily assembled when considering the 
following steps: 

1. Apply (6), (7) and (8) to the RLC parallel 
branches connected between the buses 1, 2 and 
3 to ground. 

2. Apply (5) to the RLC series branches 
connected between the buses 1 and 2 and 
between the buses 1 and 3.  

3. Write the KCL for each circuit node (bus). 

4. Consider the nodal voltages as output variables 
and the nodal injected currents as the input 
variables. 
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The equations (10) e (11) may be written in a compact 
form: 

( ) ( ) ( )ttt uBxAxT +=&  (12) 

( ) ( ) ( )ttt uDxCy +=  (13) 

When comparing (12) and (13) with (1) and (2), one 
notes that the state-space and descriptor system 
formulations differ by the matrix T. For the trivial case 
where T equals the identity matrix, the descriptor 
system degenerates into the state-space formulation. 

The electrical network described by (12) and (13) has 
multiple inputs and multiple outputs. Considering only 
one input (u) and one output (y), the descriptor system 
formulation reduces to: 

( ) ( ) ( )tutt bxAxT +=&  (14) 

( ) ( ) ( )tudtty T += xc  (15) 

The superscript T denotes matrix or vector transpose. 
Vector b corresponds to one column of matrix B and 
vector cT to a row of matrix C while d is equal to one 
element of matrix D. Applying the Laplace transform to 
(14) and (15) yields: 

( ) ( ) ( )susss bxAxT +=  (16) 

( ) ( ) ( )sudssy T += xc  (17) 

Solving (16) and (17), and considering d = 0, one 
obtains: 

( ) ( ) ( ) ( ) ( )∴=−= − susGsussy T bATc 1  

( ) ( ) bATc 1−−≡ ssG T  (18) 

Consider the test system shown in Figure 4 and assume 
u = i2 and y = v3. The vectors b and c that define the 
transfer function G32(s) are then given by: 

[ ]T01000000000000=b  (19) 

[ ]10000000000000=Tc  (20) 

G32 is obtained by substituting (19) and (20) into (18). 

2.2  Matrix Y(s) 

The direct s-domain modeling of the electrical network 
yields: 

)()()( sss uBxY =  (21) 

)()()( sss uDxCy +=  (22) 

An electrical system comprised of passive elements and 
driven by current sources, has its Y(s) matrix built just 
as the nodal admittance matrix Y(jω) used in the 
conventional frequency response method. Thus, a 
diagonal element iiy  of the nodal matrix Y(s) is 
calculated as the summation of all elementary 
admittances connected to node i. Additionally, the off-

diagonal elements ijy  are equal to the negative value of 

the summation of all elementary admittances connected 
between nodes i and j. Replacing the purely imaginary 
frequency jω for the complex frequency s is needed in 
order to perform modal analysis. 

Evaluation of the first derivative of Y(s) with respect to 
the complex frequency s is required when using Newton 
eigensolution algorithms. This matrix derivative can be 
analytically obtained following rules similar to those 
used for building the Y(s) matrix. 

Consider, for instance, the series and parallel RLC 
branches shown in Figure 1 and Figure 2. Their 
admittances are given by the following complex 
frequency functions: 

sC
sLR

yseries 1
1

++
=  (23)

sC
sLR

y parallel ++= 11
 (24)

The derivatives of (23) and (24) with respect to s are 
given by: 
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The Y(s) and dssd )(Y matrices for the test system 
have the following structure: 
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The analytical expressions for the diagonal elements y11 
and dsdy11  are given by: 
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The expressions for the off-diagonal elements y13 = y31 
and dsdydsdy 3113 =  are given by: 
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In the Y(s) formulation, nodal voltages and currents are 
related through the equations: 

)()()( sss iBvY =  (33) 

)()( ss vCy =  (34) 

where v and i are the vectors for nodal voltages and 
currents. Comparing (21) and (22) with (33) and (34) 
one notes that x(s) = v(s), u(s) = i(s) and D = 0 . 

When current sources exist in all system buses, matrix B  
becomes equal to the identity matrix. Likewise, when 
the output vector contains all nodal voltages matrix C 
becomes equal to the identity matrix. Equations (33) and 
(34), under these assumptions, reduce to the well-known 
equations: 

ivY =)(s  (35) 

vy =  (36) 

Considering now only one input (u) and one output (y), 
equations (21) and (22) are reduce to: 

)()()( suss bxY =  (37) 

)()()( sudssy T += xc  (38) 

Solving (37) for x(s) and assuming d = 0, one obtains 
after a simple manipulation: 

( ) ( ) ( ) ∴== − susGsussy T )()( 1bYc  

( ) ( ) bYc 1−≡ ssG T  (39) 

Consider again that u = i2 and y = v3 for the test system. 
The vectors b and c that define the transfer function 
G32(s) are now given by: 

[ ] T010=b  (40) 

[ ]100=Tc  (41) 

3 TRANSFER FUNCTION PLOTTING 

The magnitude of transfer function G32(jω) is plotted in 
Figure 5, utilizing the two methodologies available in 
HarmZs. The red curve is the |G32(jω)| frequency 
response obtained when using the descriptor system 
model while the blue curve is the same response 
obtained fo r the Y(s) model of the test system. As 
expected, the two curves are identical. 

The test system parameter values are given in Table 1. 

Table 1: Test system parameter values 

Inductance (mH) Resistance (Ω) Capacitance (µF) 
Lcc 8.0 R2 80.0 C1 23.9 

L2 424.0 R3 133.0 C2 8.0 

L3 531.0 R12 0.46 C3 11.9 

L12 9.7 R13 0.55   
L13 11.9     

The HarmZs program allows plotting curves utilizing 
any of the three visualization tools: the built-in 
graphical interface, Microsoft Excel or the Plot CEPEL 
program [20]. In this paper all curves were plotted using 
Microsoft Excel. 

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Im
pe

da
nc

e 
( Ω

)

Descriptor System
Matrix Y(s)

 
Figure 5: Transfer function G32(jω) 

4 COMPARING THE TWO METHODOLOGIES 

The advantages and disadvantages of the Descriptor 
System and Matrix Y(s) methodologies are compared 
[6] in this section. 

Descriptor Systems 

• Main Advantage 

1. The complete set of system poles and transfer 
function zeros can be simultaneously calculated 
using the QZ decomposition [21]. These calculations 
may alternatively be carried out using one-
eigenvalue-at-a-time iterative methods (Newton 
methods) [8]-[11], [22]. 

• Main Disadvantages 

1. Difficulties in modeling frequency dependent 
parameters.  

2. The descriptor system matrices have dimensions that 
are much larger than the number of system buses. 

Matrix Y(s) 

• Main Advantages 

1. The modeling of frequency dependent parameters is 
properly accomplished [10], [11]. 

2. The system matrices have dimension equal or close 
to the number of system buses. When there are 
voltages sources to be considered, the dimension is 
equal to the number of system buses plus the number 
of voltage sources. 

• Main Disadvantage 

1. The system poles and the transfer function zeros can 
only be calculated using one-eigenvalue-at-a-time 
iterative methods (Newton methods). Powerful 
eigenvalue deflation techniques, among other 
strategies rapidly learned by experienced engineers, 
make practical the use of this modeling technique for 
large system models. 



5 THE IMAGINARY PARTS (FREQUENCIES) 
OF SYSTEM POLES AND TRANFER 
FUNCTIONS ZEROS AND THE 
FREQUENCY RESPONSE PLOT 

The relationship between pole and zero frequencies can 
be summarized as follows [6]: 

1. If iii js ω+σ=  is a system pole or a transfer 

function ( )sGkj  zero, then ( )iikj jG ω+σ  tends to 

infinity or zero, respectively. However, ( )ikj jG ω  

does not approach ∞ or is equal to 0. 

2. The ( )ikj jG ω  modulus has a high impedance value 

(very close to a local maximum) or a low impedance 
value (very close to a local minimum) depending on 
whether is  is a pole or a zero. 

3. The frequency iω  is very close to a parallel or series 

resonance frequency, depending on whether is  is a 
pole or a zero. 

The above statements are more easily understood 
through a test system example. The test system poles 
and the zeros for the self-impedance (transfer function) 
of each bus are shown in Table 2. 

Table 2: Test system poles and zeros 
of the bus self-impedances 

 Zeros 

 
Poles 

Bus 1 Bus 2 Bus 3 

1 -2.90.08 
± j 1583.6 

-338.52 
± j 2670.9 

-255.47 
± j 2084.9 

-415.26 
± j 2402.1 

2 -507.00 
± j 3069.1 

-804.43 
± j 3550.6 

-93.698 
± j 3975.6 

-398.38 
± j 4424.9 

3 
-345.88 

± j 4535.7 
0 0 0 

4 -0.98914 -1.0091 -0.99428 -1.0357 

5 -1.0419 -1.0549 -26.151 -27.820 

The frequencies in Hz (absolute value of the imaginary 
parts divided by 2 π) of the complex conjugate network 
poles and zeros for the test system (see Table 2) are 
presented in Table 3. 

Table 3: Pole and zero frequencies in Hz 

 Zeros 

 
Poles 

Bus 1 Bus 2 Bus 3 

 1 2 3 1 2 1 2 1 2 

f(Hz) 252 488 722 425 565 332 633 382 704 

The self-impedance (transfer function) magnitudes as 
functions of frequency for the three system buses are 
shown in the next figures. These figures also contain 

vertical lines connecting the pole and zero frequencies 
to their respective impedance magnitude values. 
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Figure 6: Self-impedance of bus 1 
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Figure 7: Self-impedance of bus 2 
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Figure 8: Self-impedance of bus 3 

These three figures help explain the pole-zero 
cancellation phenomenon. For instance, the two zeros of 
the bus 1 self-impedance (425 Hz and 565 Hz) are close 
to the pole 2 (488 Hz), having a peak-shaving effect 
around this frequency value on the magnitude plot of 
Figure 6. Note also that the second zero of the bus 3 
self-impedance (704 Hz) is close to the pole 3 (722 Hz), 
reducing the impedance magnitude at this frequency as 
shown in Figure 8. 

6 DOMINANT POLES AND REDUCED 
MODELS 

The poles that have the largest associated residue 
moduli for a chosen transfer function are defined as 
dominant poles of that transfer function. If these transfer 
function poles are fairly close to the imaginary axis or, 
in other words, if they have relatively small real parts, 
they will produce a high peak in the frequency response 
magnitude plot. 



A transfer function can be wri tten in a partial fraction 
form: 

( ) d
s

R
sG

n

i i

i +
λ−

= ∑
=1

 (42) 

where Ri is the residue associated with the pole iλ , n is 
the total number of poles and d is the direct term. Their 
textbook definitions are [19]: 
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s ∞→

= lim  (44) 

The HarmZs program does not utilize the above 
definition of residue in its calculations. There are other 
equivalent equations, based on eigenvectors, that lead to 
more efficient computations [9]-[11]. 

Considering only the dominant poles of the transfer 
function, the following approximation holds: 

( ) d
s

RsG
i

i +
λ−

≅ ∑
Ω

 (45) 

where Ω denotes a chosen set of dominant poles. 

The poles and associated residues of the bus  1 and bus 3 
self-impedances are shown in Table 4. One should note 
that complex-conjugate poles have complex-conjugate 
residues. 

Table 4: Poles and associated residues 

 Residue moduli 

 
Poles 

Bus 1 Bus 3 

1 -2.90.08 ± j 1583.6 8.1782 × 103 1.9021 × 104 

2 -507.00 ± j 3069.1 2.5161 × 103 2.0353 × 104 

3 -345.88 ± j 4535.7 1.2237 × 104 3.3791 × 103 

4 -0.98914 1.9039 × 10-4 4.4480 × 10-1 

5 -1.0419 6.5180 × 10-5 6.2405 × 10-2 

For the bus 1 self-impedance, the pairs of complex 
conjugate poles 1 and 3 have associated residues with 
largest moduli, being therefore the most dominant poles 
for this transfer function. From the magnitude curve of 
the bus 1 self-impedance (Figure 6), one can indeed 
verify that these complex-conjugate poles yield the 
highest peaks. Regarding the bus 3 self-impedance, the 
pairs of complex conjugate poles 1 and 2 are the most 
dominants as can be verified in Table 4 or in Figure 8. 

Figure 9 and Figure 10 show the self -impedance 
magnitude plots for bus 1 and bus 3 considering only 
the two most dominant pairs of complex-conjugate 
poles (reduced model). Note that the reduced model 
here is actually a modal equivalent of the specified 
transfer function. The original plots, considering all 
poles (complete model), are superimposed for easy 

comparison. One can see there is good agreement 
between the corresponding curves. 

It must be pointed out that dominant poles and reduced 
models are very important concepts that help obtaining 
low order network equivalents of large-scale systems 
that are used to speed-up engineering studies. 
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Figure 9: Reduced model of bus 1 self-impedance 
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Figure 10: Reduced model of bus 3 self-impedance 

7 POLE AND ZERO SENSITIVITIES 

The eigenvalue (pole or zero) sensitivity is defined as 
the rate of change of its real and imaginary parts with 
respect to a system parameter. Analytical expressions 
for sensitivity calculation are given in [3], [8], [13], 
[14]. The sensitivities of the zeros 1 and 2 for the bus 2 
self-impedance are given in Table 5. 

Table 5: Sensitivities of the zeros of the bus 2 
self-impedance (1 + j rad)(s-1/µF) 

Capacitor Zero 1 Zero 2 

C1 4.3708 – j 9.9007 -4.3708 – j 63.708 

C2 0 0 

C3 11.523 − j 67.108 15.024 – j 37.988 

The sensitivities of the zeros 1 and 2 of the bus 2 self-
impedance with respect to C2 are seen, from Table 5, to 
be null. Therefore, as the value of C2 is changed the 
zeros 1 and 2 will remain constant, and so will the series 
resonances associated with these zeros. The magnitude 
of the bus 2 self-impedance as a function of frequency is 
shown in Figure 11 for three values of C2: 8.0 µF (the 
original value), 12 µF and 16 µF. As verified in Figure 
11, large changes in the value of C2 practically do not 
alter the series resonance frequencies. 
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Figure 11: Self-impedance of bus 2 for three values of C2 

8 SHIFTING POLES TO REDUCE HARMONIC 
DISTORTIONS 

This section formulates a harmonic problem for the test 
system and detailed describes a proposed solution. This 
solution is based on pole sensitivity information in 
which the system poles are shifted to more suitable 
locations in the complex plane in order to reduce 
harmonic distortions. 

8.1  Harmonic Problem Definition 

Assume that the bus voltage of the test system (see 
Figure 4) is 20 kV, the fundamental frequency is 50 Hz 
and that current sources Ih1 and Ih3, have negligible 
magnitudes while Ih2 represents a twelve-pulse 
converter whose harmonic contents are given in Table 6 
in percentage values of the base current. The symbols f, 
h and Ih denote harmonic frequency, order and contents, 
respectively. When adopting 10 MVA and 20 kV as 
base values, the base current turns equal to 288.68 A. 

Table 6: Harmonic current components 

f(Hz) 550 650 1150 1250 1750 1850 

h 11 13 23 25 35 37 

Ih (%) 9.09 7.69 4.35 4.00 2.86 2.70 

The harmonic voltage at bus 2 is given by the product of 
its self-impedance magnitude and the injected current 
modulus, considering each harmonic frequency. On the 
other hand, the harmonic voltages at buses 1 and 3 are  
given by the product of the transfer impedance 
magnitude between them and bus 2 by the injected 
current modulus. An individual harmonic voltage 
distortion is expressed as a percentage value of the 
corresponding phase-to-ground bus voltage. 

The self-impedance of bus 2 and the transfer-
impedances between buses 1 and 2, and buses 3 and 2 
have their magnitudes as functions of frequency 
presented in Figure 12. 

A bar chart showing the individual harmonic distortions 
at each bus is presen ted in Figure 13. 

0
10
20
30
40
50
60
70
80

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Im
pe

da
nc

e 
( Ω

)

|Z(1,2)| |Z(2,2)| |Z(3,2)|

 
Figure 12: Self-impedance of bus 2 and transfer-impedances 

between buses 1 and 2, and buses 3 and 2 
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Figure 13: Individual harmonic distortions 

8.2 Pole Shifts 

The proposed solution for reducing the harmonic 
voltages distortions consists in shifting the pole 2  
(-507.00 + j 3069.1) to the left and the pole 3  
(-345.88 + j 4535.7) to the right, by varying the system 
capacitor values. The first step here considered is the 
shifting of pole 2. The sensitivities of pole 2 with 
respect to the three system capacitors are presented in 
Table 7. 

Table 7: Sensitivities of the pole 2 (1 + j rad)(s-1/µF) 

Capacitance Pole 2 (-507.00 + j 3069.1) 

C1 7.1822 – j 3.1098 

C2 13.437 – j 91.449 

C3 18.926 − j 60.418 

This table indicates that the pole 2 shifting can be more 
efficiently accomplished by varying the capacitor C2. It 
also indicates that the variation of capacitor C1 is not 
effective for the pole 2 shifting. The frequency 
(imaginary parts divided by 2 π) of the pole 2 as a 
function of changes in the capacitor values at each bus 
is shown in Figure 14. This figure confirms the 
sensitivity information given in Table 7. Thus the 
capacitor at bus 2 was increased by 12 µF in order to 
bring the frequency of pole 2 to a value smaller than 
400 Hz. The system poles for the new C2 value (20 µF) 
are presented in Table 8. The original system poles are 
also presented for easy comparison. The bus 2 self-
impedance magnitude and the transfer-impedance 
magnitude between buses 1 and 2, and buses 3 and 2 as 
functions of frequency are presented in Figure 15 for 
C2 = 20 µF. 
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Figure 14: Pole 2 frequency as a function 

of additional capacitance 

Table 8: Comparison between original poles (C2 = 8 µF) 
and those obtained for C2 = 20 µF 

Original poles f (Hz) Poles for C2 = 20 µF f (Hz) 

−290.085 ± j 1583.60 252.0 −237.144 ± j 1354.97 215.7 

−507.008 ± j 3069.12 488.5 −331.089 ± j 2499.21 397.8 

−345.878 ± j 4535.64 721.9 −105.987 ± j 4153.33 661.0 

−0.989149 0 −0.989149 0 

−1.04187 0 −1.04187 0 
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Figure 15: |Z12|, |Z22| and |Z32| for C2 = 20 µF 

An undesirable effect produced when increasing the 
capacitance C2 was the shifting of pole 3 from 721.9 Hz 
to 661 Hz. This pole shifting increases the voltage 
distortions at 13 th harmonic (650 Hz). However, the 
shifting of pole 2 from 488.5 to 397.8 improved 
significantly the 11th harmonic voltage distortions as 
seen in Figure 16. 
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Figure 16: Individual harmonic distortions for C2 = 20 µF 

The shifting to the right of pole 3 (661 Hz) will be 
pursued next, based on the consideration that 
C2 = 20 µF. 

The sensitivities of poles 2 and 3 with respect to the 
system capacitors are presented in Table 9. The 
frequencies (imaginary parts divided by 2 π) of the 
poles 2 and 3 as functions of a continuous reduction in 
the capacitance at each bus are plotted in Figure 17 and 
Figure 18, respectively. 

Table 9: Sensitivities of the pole 2 and 3 (1 + j rad)(s-1/µF) 

Capacitance Pole 2 (398 Hz) Pole 3 (661 Hz) 

C1 0.27958 − j 0.97724 −3.5655 − j 63.053 

C2 7.6650 − j 22.906 2.9086 − j 10.971 

C3 12.490 − j 62.970 9.5310 − j 28.445 
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Figure 17: Pole 2 frequency as a function of capacitor 

reduction at a given bus 
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Figure 18: Pole 3 frequency as a function of capacitor 

reduction at a given bus 

Note that the three curves in Figure 17 confirm the 
sensitivity information given in the second column of 
Table 9 for the complete range of capacitance variation. 
On the other hand, Figure 18 confirms the information 
from the third column of Table 9 just for capacitance 
changes from 0 to 7 µF approximately. From these 
results one can see that variations on capacitance C1 will 
promote significant shifting in pole 3 practically without 
any changes in pole 2. Thus the capacitance at bus 1 
was decreased by 10 µF in order to make the frequency 
of pole 3 greater than 800 Hz. The system poles for 
C2 = 20 µF and C1 = 13.9 µF are presented in Table 10. 
The original system poles are also presented for easy 
comparison. The self-impedance of bus 2 and the 
transfer-impedances between buses 1 and 2, and buses 3 
and 2 have their magnitudes as functions of frequency 
presented in Figure 19. The individual harmonic 
distortions are presented in Figure 20. 



Table 10: Comparison between original and for C2 = 20 µF 
and C1 = 13.9 µF poles values 

Original poles f(Hz) 
Poles for C2 = 20 µF 
and C1 = 13.9 µF f(Hz) 

−290.085 ± j 1583.60 252.0 −271.788 ± j 1426.71 227.1 

−507.008 ± j 3069.12 488.5 −333.847 ± j 2508.85 399.3 

−345.878 ± j 4535.64 721.9 −68.586 ± j 5139.13 817.9 

−0.989149 0 −0.989150 0 

−1.04187 0 −1.04187 0 
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Figure 19: |Z12|, |Z22| and |Z32| for C2 = 20 µF and C1 = 13.9 µF 
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Figure 20: Individual harmonic distortions for 

C2 = 20 µF and C1 = 13.9 µF 

Figure 20 shows that the highest distortions occur at 
bus  2, indicating that the bus  2 self-impedance should 
be reduced. This may be accomplished by increasing the 
C2 value in order to shift the pole 2 (399.3 Hz) to the 
left once again. It must be pointed out that the zeros of 
the self-impedance for bus k do not change with the 
connection of new shunt elements at the same bus  k. 
This is due the fact that the self -impedance becomes 
null for a s value equal to a zero of this self-impedance. 
Consequently, the connection of a new shunt element at 
this bus is short-circuited at this s value and the 
equivalent impedance remains null. Thus s remains a 
zero of the bus k self-impedance. This fact was verified 
in item 7, where the C2 value was changed and the zeros 
of bus  2 self-impedance remained exactly the same (see 
Figure 11). When increasing the value of C2, the zeros 
of bus  2 self-impedance do not change while the poles 
are left-shifted towards their nearest-neighbor zeros. 
These pole shifts will promote the desired pole-zero 
cancellation phenomena (seen in item 5) reducing the 
corresponding peaks in bus 2 self-impedance magnitude 
curve as shown in Figure 21 for three additional 
capacitance values. Figure 22 shows the individual 

harmonic distortions for an additional capacitance value 
equal to 18 µF (C2 = 26 µF, which corresponds to the 
red plot in Figure 21). This is the solution proposed in 
this paper. The numerical values for the individual 
harmonic distortions plotted in Figure 13 (original 
system) and in Figure 22 (proposed solution) are 
presented in Table 11, as well as the distortions limits 
[23] adopted in this paper. The symbols used in this 
table O. S., P. S., h and THD denote original system, 
proposed solution, harmonic order and total harmonic 
distortion, respectively. 
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Figure 21: Bus 2 self-impedance for additional capacitance of 

12 µF, 18 µF and 24 µF 
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Figure 22: Individual harmonic distortions for 

C2 = 26 µF and C1 = 13.9 µF 

Table 11: Harmonic voltages distortions for the original 
system and proposed solution 

 Bus 1 Bus 2 Bus 3 

h O. S. 
(%) 

P. S. 
(%) 

O. S. 
(%) 

P. S. 
(%) 

O. S. 
(%) 

P. S. 
(%) 

IEC 
(%) 

11 6.14 1.27 8.24 3.12 8.26 1.71 3.50 

13 7.30 1.42 2.47 1.92 5.24 1.02 3.00 

23 0.279 0.165 2.50 0.639 0.0436 0.0257 1.50 

25 0.180 0.102 2.01 0.530 0.0232 0.0132 1.50 

35 0.0363 0.0196 0.905 0.259 0.00225 0.00121 1.13 

37 0.0283 0.0152 0.798 0.230 0.00156 0.000839 1.08 

THD 9.54 1.92 9.26 3.77 9.78 1.99 8.00 

 

9 Conclusions 

This paper briefly described some features of the 
HarmZs program for the analysis of harmonic problems 
in power systems, as well as some theoretical 
background needed for understanding the 
methodologies computationally implemented in the 



program. This paper covered a large set of topics, 
including: 

• Network-modeling methodologies suitable for modal 
and conventional analysis: Y(s) matrix and 
Descriptor Systems. A comparison between these 
methodologies is presented. 

• Transfer function plotting capabilities. 

• Calculations and concepts of poles, zeros, their 
sensitivities to system parameter changes and the 
pole-zero cancellation phenomenon applied to 
harmonic analysis. 

• Pole residues, dominant poles and reduced models as 
important concepts to help obtaining low order 
dynamic network equivalents (modal equivalents) of 
large scale power systems. 

• Formulation of a harmonic problem example using a 
test system and its effective solution by modal 
analysis. 
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