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SUMMARY

The HarmZs program has been developed for the
analysis of harmonic problems in power systems. This
programn makes use of moda analysis that provides
additional dynamic information on electrical networks
that may be effectively used to improve their harmonic
performance. HarmZs also obtains the results produced
by the conventional harmonic analysis method, which is
based on nodal admittance matrices computed at various
discrete values of frequency within the range of interest.
This paper describes some aspects and concepts of the
conventional and modal analysis of electrical networks
as well as highlights some important features of the
HarmZs program related to graphical interface and
network/equipment modeling.

Kemords harmonics, modal analysis, descriptor
systems, state-space, transfer function, freguency
response.

1  INTRODUCTION

The HarmZs program [1] utilizes two recent electrical
network-modeling technologies, named Descriptor
Systems [2]-[6] and Y(s) matrix [6]{12, that allow
electrical network analyses over al the complex plane s
instead of just over the imaginary “jw’ axis. The
expanded domain of modal analysis provides an
important set of dynamic system information that is
hard to obtain through use of the two conventional
methods: time simulation and frequency response. The
information provided by modal analysis includes the
natural oscillation nmodes, identification of equipment
that more heavily participate in these modes, modal
sensitivities with respect to parameters changes, etc.
This additional dynamic information may be effectively
used to improve the harmonic performance of electrical
networks [3]-[8], [13], [14]. The program also obtains
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all the results produced by the conventional frequency
domain method, which is based on nodal admittance
metrices computed at various discrete values of
frequency within the range of interest[15]]18].

Some basic concepts of the conventional and modal
analysis methods are reviewed in this paper using a
simple electrical system. Details of electrical network
and equipment modeling and some features of the
graphical interface are also described in the paper.

2 NETWORK MODELING TECHNIQUES
SUITABLE FOR MODAL ANALYSIS

The state-space model of electrical networks comprises
a set of ordinary firstorder differential equations that
describe the dynamic behavior of the inductive and
capacitive elements [19]. The inductive currents and
capacitive voltages constitute the system state variables.
The state-space equations describing a linear system
(electrical network) can be generically written as:

x(t)=A x({t)+Bu(t) @
y(t)=Cx(t)+Duft) @)
where x is the state variable vector, X the time

derivative of x, u the input variable vector, y the output
variable vector, A, B, C and D constant matrices, A
being the system state matrix.

The system states are defined as the minimum set of
variables that fully describe the dynamic behavior of the
system [19]. Therefore, a minimum set of linearly
independent inductive currents and capacitive voltages
must be determined. The available techniques to
determine this minimum set of states involve an
elaborate topological analysis of the electrical circuit
which turns the construction of the A matrix into a
difficult task. These difficulties are eliminated when



using the network-modeling techniques implemented in
the HarmZs program, which are explained in the
following sub-sections. For the sake of brevity and
clarity, only networks having basic RLC components
are described. However, more complex components
such as long transmission lines [2], [1]], [11] and three
winding transformers [8] are also properly considered in
HarmZs.

2.1  Descriptor System

When modeling electrical networks by the descriptor
system technique all inductive currents and all
capacitive voltages are assumed to be state variables. It
must be pointed out that all methods (eigensolution
methods, for example) used in conjunction with the
descriptor system model must properly deal with state
variable redundancies. Consequently, there are indeed
no restrictions in using a set of state variablesthat is not
a minimum set. In addition to the differential and
algebraic equations that describe the behavior of each
circuit component, the Kirchhoff's current law (KCL)
must be written for each circuit node. The KCL
equations define the electrical connections among the
several circuit elements. In other words, the KCL
equations define the network topology.

RLC SeriesBranch

A RLC series branch connected between the nodes
(buses) k andj isdepicted in Figure L
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Fgure 1: RLC seriesbranch

The dynamic behavior of this element is described by a
set of two ordinary differential equations of first order:

dii
Vk-VJ' :Rikj+LTk]+VC (3)
dve _.
CT—lkj (4)

where v, and v, are the voltages of nodes k and j,
respectively. The element variables are the branch

current i and the capacitor voltage vc. When there is

no capacitor in the branch, (3) and (4) reduceto asingle
equation:

. diy
lej+L?k‘:vk- v )

Note that in the absence of the capacitor, ii; isthe only
variablein the series branch.

RLC Parallel Branch

A RLC parallel branch connected between the nodes k
andj isdepicted in Figure 2

T

Figure 2: RLC pardld branch
Thedynamic behavior of this element is described by:

Yori+cSe i ©
L‘j;t_L:VC ™
Ve = V- Y @®)

where vy and v are the voltages of nodes k and j,
respectively. The element variables are the branch

current i , the capacitor voltage v and the inductive

current i.. When there is no inductor in the branch, (6)
and (7) reduce to asingle equation:

Yo +c B = ©)

Note that in this case there are two variables, i andvg,
in the parallel branch.

The descriptor system modeling may be better explained
through an example utilizing the test system pictured in
Figure3.

Vth
HV System

L Equivalent
cc
bus1 S5 TL(HVMY)
8 1
"|'_ 1
TL1-2 TL 1-3
bus 2 T~ T2(MVILV) bus 3 5 T3(MVILV)

Iz 4 T 2 h3 4 "|:C3

Figure 3: test system
Vip: Thévenin voltage. L.: Short-circuit inductance of the HV
system. TL: HV/MV transformer. T2 and T3: MV/ILV
Transformers. TL 1-2: transmission line connecting bus 1 to
transformer T2. TL 1-3: transmission line connecting bus 1 to



Apply (6), (7) and (8 to the RLC parald
branches connected between the buses 1, 2 and

3toground.
connected between the buses 1 and 2 and

2. Apply (6) to the RLC series branches
between the buses 1 and 3.
Write the KCL for each circuit node (bus).

4. Consider the nodal voltages as output variables

3.

The symbols L, and R, denote the inductance and
1

resistance of the equivalent series association of theline
represent the inductance and resistance of the combined
series impedances of the line TL 1-3 and the transformer

T3. The impedance loads Z, and Z; are modeled as
shunt reactors (L, and Lj) in paralel with shunt

resistors (R, and Ry).
equations are easily assembled when considering the

system are shown at the bottom half of this page. These
following steps:

TL1-2 with the transformer T2 Similarly, L;; and R4
The descriptor system matrix equations for the test

bus 3

Ihy T and lpg

Ljvn

Ry

L12

transformer T3. G, Cp, and Ga: capacitor banks connected to

buses 1, 2 and 3, respectively. 2 and Zz load impedances

connected to buses 2 and 3, respectively.

This test system can be modeled by the interconnection

harmonic current sources connected to buses 1, 2 and 3,
of several RLC branches as shown inFigure 4.

respectively.
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The equations (10) e (12) may be written in a compact
form:

T x(t)=A x(t) +Bu(t) (12

y(t)=Cx(t) +Dul(t) (13

When comparing (12) and (13) with (1) and (2), one
notes that the state-space and descriptor system
formulations differ by the matrix T. For the trivial case
where T equals the identity matrix, the descriptor
system degeneratesinto the state-space formulation.

The electrical network described by (12) and (13) has
multiple inputs and multiple outputs. Considering only
one input (u) and one output (y), the descriptor system
formulation reduces to:

T x(t)= A x(t)+ b u(t) (14)
y(t)=c"x(t) +d uft) (19

The superscript T denotes matrix or vector transpose.
Vector b corresponds to one column of matrix B and
vector ¢’ to arow of matrix C while dis equal to one
element of matrix D. Applying the Laplace transform to
(14) and (15) yields:

sT x(s) = A x(s) +b u(s) (16)

y(s)=c"x(s)+ d us) (17

Solving (16) and (17), and considering d=0, one
obtains:

y(s) =c' (sT - A)' b u(s) = G(s) u(s)\
G(s)e c'(sT-A) b (18

Consider the test system shown in Figure 4 and assume

u=i; and y=vs The vectors b and c that define the
transfer function Gsz(s) are then given by:

b=[00000000000j010]" (19

=[ooooo0000000/001] (20
Gs is obtained by substituting (19) and (20) into (18).
2.2 Matrix Y(s)

The direct s-domain modeling of the electrical network
yields:

Y (s) x(s) = B u(s) (29
y(9) =Cx(s) +D u(s) (22

An electrical system comprised of passive elements and
driven by current sources, has its Y(s) matrix built just
as the nodal admittance matrix Y(jw) used in the
conventional frequency response method. Thus, a
diagonal element y; of the nodal matrix Y(9 is
calculated as the summation of all elementary
admittances connected to node i. Additionally, the off-

diagonal elements y; j are equal to the negative value of

the summation of al elementary admittances connected
between nodes i and j. Replacing the purely imaginary
frequency jw for the complex frequency s is needed in
order to perform modal analysis.

Evaluation of the first derivative of Y(s) with respect to
the complex frequency sis required when using Newton
eigensolution algorithms. This matrix derivative can be
analytically obtained following rules similar to those
used for building theY(s) matrix.

Consider, for instance, the series and padld RLC
branches shown in Figure 1 and Figure 2. Their
admittances are given by the following complex
frequency functions:

1
Yseries= 2.
Fe+sl_+i @
sC
1. 1
=—_—+—+sC (24
yparaIIeI R o

The derivatives of (23) and (24) with respect to s are
given by:

dy ) "J'zi
(jesrles: C . (25
(??Q+3L+—9
e Cg
dY parailel :C_% 26)
ds sL

The Y(s) and dY(s)/ds matrices for the test system
have the following structure:

€Y11 | V1o Y133
€

Y(S) =aYo1|Y22| O (@0
EYa1l O |yssH

av(s) & édy;/ds|dy;,/ds|dy;3/dsy
I édy 21/0s|dy,, /ds| 0 3 (28
&y /ds| O |dyss/dsH

The analytical expressions for the diagonal elements yi1
and dy,,/ds are given by:

&1l 0
Yu :g_+scl z (29
sL o gRlz"'SlelZJ §R13+S|—13ﬂ

dm_ 1 oé - Ly, ﬂé - Lig
C, - (30
é L g é(R12+5|-12) a é(R13+5|-13) 5

The expressions for the off-diagonal elements yiz=ya
and dy,;/ds= dy,, /ds aregiven by:

(3D

ds ds (R13 +5Ly3)°



In the Y(9 formulation, nodal voltages and currents are
related through the equations:

Y(s)v(s)=Bi(9) (33
y(s)=Cv(s) (39

where v and i are the vectors for nodal voltages and
currents. Comparing (21) and (22) with (33) and (34)
one notes that x(s) = \(s), u(9) =i(sg) and D=0.
When current sources exist in all system buses, matrix B
becomes equal to the identity matrix. Likewise, when
the output vector contains all nodal voltages matrix C
becomes equal to the identity matrix. Equations (33) and
(34), under these assumptions, reduce to the well-known
equations:
Y v=i (39
y=v (36)
Considering now only one input () and one output (y),
equations(21) and (22) are reduce to:
Y (s) X(s) =b u(s) (37)

y(s) = c"x(s)+ d u(s) (39

Solving (37) for x(s) and assuming d =0, one obtains
after asimple manipulation:

y(s) :cTY(s)'lb u(s) :G(s) u(s) \

G(s)e cy(s)'b (39
Consider again that u=i, and y =v; for the test system.

The vectors b and c that define the transfer function
Ggy(S) are now given by:

b=[010]" (40)
¢"=[0o01 (41)
3 TRANSFER FUNCTION PLOTTING

The magnitude of transfer function GsAjw) is plotted in
Figure 5, utilizing the two methodologies available in
HarmZs. The red curve is the [GaAjw)| frequency
response obtained when using the descriptor system
model while the blue curve is the same response
obtained for the Y(s) model of the test system. As
expected, thetwo curves areidentical.

The test system parameter values are given inTable 1.
Table 1: Test system parameter values
Inductance (mH) | Resistance (W) | Cepacitance (nF)
Lee 8.0 R, 80.0 C 23.9
L, 4240 | Ry | 1330 | G 80
Ls 531.0 | Rp 0.46 G 11.9
L2 97 Rz 0.55
Lig 11.9

The HarmZs program allows plotting curves utilizing
any of the three visualization tools: the built-in
graphical interface, Microsoft Excel or the Plot CEPEL
program [20]. In this paper all curves were plotted using
Microsoft Excel.
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Figure 5: Transfer function Gz{jw)

4  COMPARING THE TWO METHODOLOGIES

The advantages and disadvantages of the Descriptor
System and Matrix Y(s) methodologies are compared
[6] in thissection.

Descriptor Sysems
Main Advantage

1. The complete set of system poles and transfer
function zeros can be simultaneously calculated
using the QZ decomposition[21]. These calculations
may alternatively be carried out using one-
eigenvalue-at-atime iterative methods (Newton
methods) [8]-[11],[22].

Main Disadvantages

1. Difficulties in modeling frequency dependent
parameters.

2. Thedescriptor system matrices have dimensions that
are much larger than the number of system buses.

Matrix Y(9)
Main Advantages

1. The modeling of frequency dependent parameters is
properly accomplished [10], [11].

2. The system matrices have dimension equal or close
to the number of system buses. When there are
voltages sources to be considered, the dimension is
equal to the number of system buses plus the number
of voltage sources.

Main Disadvantage

1. Thesystem polesand the transfer function zeros can
only be calculated using one-<igenvalue-at-atime
iterative methods (Newton methods). Powerful
eigenvalue deflation techniques, among other
strategies rapidly learned by experienced engineers,
make practical the use of this modeling technique for
large system models.



5  THEIMAGINARY PARTS (FREQUENCIES)
OF SYSTEM POLES AND TRANFER
FUNCTIONS ZEROS AND THE
FREQUENCY RESPONSE PLOT

The relationship between pole and zero frequencies can

be summarized as follows[6]:

1 If 5=s;+jw is a system pole or a transfer
function Gy(s) zero, then Gy(s; + jw) tends to
infinity or zero, respectivdy. However, ij(jwi)
does not approach¥ or isequal to 0.

2. The ij(jwi) modulus has a high impedance value

(very close to a local maximum) or a low impedance
value (very close to a local minimum) depending on
whether 5 isapoleor azero.

3. Thefrequency w; isvery closeto aparallel or series
resonance frequency, depending on whether 5 isa
pole or azero.

The above statements are more easily understood

through a test system example. The test system poles

and the zeros for the self-impedance (transfer function)
of each bus are shown inTable 2.

Table 2: Test system poles and zeros
of the bus self-impedances

Poles Zeros
Bus 1 Bus2 Bus 3
1 -2.90.08 -338.52 -255.47 -415.26
+j 1583.6 +j2670.9 +j 2084.9 +j 2402.1
2 -507.00 -804.43 -93.698 -398.38
+j 3069.1 +j 3550.6 +j 3975.6 +j 4424.9
-345.88
3 +j 4535.7 0 0 0
4 -0.98914 -1.0091 -0.99428 -1.0357
5 -1.0419 -1.0549 -26.151 -27.820

The freguencies in Hz (absolute value of the imaginary
parts divided by 2p) of the complex conjugate network
poles and zeros for the test system (see Table 2) are
presented inTable 3.

Table 3: Pole and zero frequenciesin Hz

Zeros

Poles
Bus 1 Bus?2 Bus 3

1 2 3 1 2 1 2 1 2

f(Hz) | 252 [ 488 | 722 | 425| 565 | 332 633 | 382 | 704

The self-impedance (transfer function) magnitudes as
functions of frequency for the three system buses are
shown in the next figures. These figures also contain

vertical lines connecting the pole and zero frequencies
to their respective impedance magnitude val ues.
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These three figures help explain the pole-zero
cancellation phenomenon. For instance, the two zeros of
the bus1 self-impedance (425 Hz and 565Hz) are close
to the pole 2 (488Hz), having a peak-shaving effect
around this frequency value on the magnitude plot of
Figure 6. Note also that the second zero of the bus 3
self-impedance (704 Hz) is close to the pole 3 (722H2),
reducing the impedance magnitude at this frequency as
shown inFigure 8.

6  DOMINANT POLES AND REDUCED
MODELS

The poles that have the largest associated residue
moduli for a chosen transfer function are defined as
dominant poles of that transfer function. If these transfer
function poles are fairly close to the imaginary axis or,
in other words, if they have relatively small real parts,
they will produce a high peak in the frequency response
magnitude plot.



A transfer function can be written in a partial fraction
form:

+d (42
iq S i

where R is the residue associated with the pole | ;, nis
the total number of poles and d is the direct term. Their

textbook definitions are [19]:
R = lim G(s)(s- 1) (43
d = lim G(s) (44

The HarmZs program does not utilize the above
definition of residue in its calculations. There are other
equivalent equations, based oneigenvectors, that lead to
more efficient computations[9]-[11].

Considering only the dominant poles of the transfer
function, the following approximation holds:

G(s)@é -RI +d (45)

where Wdenotes a chosen set of dominant poles.

The poles and associated residues of the bus 1 and bus3
self-impedances are shown in Table 4. One should note
that complexconjugate poles have complexconjugate
residues.

Table 4: Poles and associated residues

Residue moduli
— Poles
Bus 1 Bus3

1| -2.90.08 +j 15836 | 8.1782 " 10° | 1.9021 ~ 10*
2| -507.00 +j3069.1 | 25161 10° | 2.0353 “ 10
3| -345.88 +j 45357 | 1.2237 ~ 10* | 3.3791 " 10°
4 -0.98914 1.9039 * 10* | 4.4480" 10*
5 -1.0419 6.5180 ~ 10° | 6.2405 " 102

For the busl self-impedance, the pairs of complex
conjugate poles 1 and 3 have associated residues with
largest moduli, being therefore the most dominant poles
for this transfer function. From the magnitude curve of
the busl selfimpedance Figure 6), one can indeed
verify that these complexconjugate poles yield the
highest peaks. Regarding the bus3 self-impedance, the
pairs of complex conjugate poles 1 and 2 are the most
dominants as can be verified in Table 4 or in Figure 8.

Figure 9 and Figure 10 show the self-impedance
magnitude plots for bus1l and bus3 considering only
the two most dominant pairs of complexconjugate
poles (reduced model). Note that the reduced model
here is actually a modal equivalent of the specified
transfer function. The original plots, considering all
poles (complete model), are superimposed for easy

comparison. One can see there is good agreement
between the corresponding curves.

It must be pointed out that dominant poles and reduced
models are very important concepts that help obtaining
low order network equivalents of largescale systems
that are used to speed-up engineering studies.
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7 POLE AND ZERO SENSITIVITIES

The eigenvalue (pole or zero) sensitivity is defined as
the rate of change of its real and imaginary parts with
respect to a system parameter. Analytical expressions
for sensitivity calculation are given in [3], [8], [13],
[14]. The sensitivities of the zeros 1 and 2 for the bus2
self-impedance are given in Table 5.

Table 5: Sensitivities of the zeros of the bus 2
self-impedance (1 +j rad)(sY/nF)

Capacitor Zerol Zero2
G 4.3708 —j 9.9007 | -4.3708 —j 63.708
G 0 0
G 11.523 - j 67.108 | 15.024 —j 37.988

The sensitivities of the zeros 1 and 2 of the bus2 self-
impedance with respect to C, are seen, from Table 5, to
be null. Therefore, as the value of G, is changed the
zeros 1 and 2 will remain constant, and so will the series
resonances associated with these zeros. The magnitude
of the bus2 self-impedance as a function of frequency is
shown in Figure 11 for three values of Cz: 8.0nF (the
origind value), 12 nF and 16 n. As verified in Figure
11, large changes in the value of G practically do not
alter the series resonance frequencies.
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8  SHIFTING POLES TO REDUCE HARMONIC
DISTORTIONS

This section formulates a harmonic problem for the test
system and detailed describes a proposed solution. This
solution is based on pole sensitivity information in
which the system poles are shifted to more suitable
locations in the complex plane in order to reduce
harmonic distortions.

8.1 Harmonic Problem Definition

Assume that the bus voltage of the test system (see
Figure 4) is 20kV, the fundamental frequency is 50 Hz
and that current sources I and |3, have negligible
magnitudes while |, represents a twelvepulse
converter whose harmonic contents are given inTable 6
in percentage values of the base current. The symbolsf,
hand I, denote harmonic frequency, order and contents,
respectively. When adopting 10MVA and 20kV as
base values, the base current turns equal to 288.68 A.

Table 6: Harmonic current components

f(Hz) | 550 | 650 | 1150 | 1250 | 1750 | 1850
h | 12 | 13| 23| 25 | 35 | 37

Ih(%)] 9.09 | 7.69 | 435 | 4.00 | 2.86 | 2.70

The harmonic voltage at bus2 is given by the product of
its self-impedance magnitude and the injected current
modulus, considering each harmonic frequency. On the
other hand, the harmonic voltages at buses 1 and 3 are
given by the product of the transfer impedance
magnitude between them and bus 2 by the injected
current modulus. An individua harmonic voltage
distortion is expressed as a percentage value of the
corresponding phase-to-ground busvoltage.

The self-impedance of bus 2 and the transfer-
impedances between buses 1 and 2, and buses 3 and 2
have their magnitudes as functions of frequency
presented inFigure 12

A bar chart showing the individual harmonic distortions
at each busis presented in Figure 13.
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Figure 12: Sdlf-impedance of bus 2 and transfer-impedances
between buses 1 and 2, and buses 3 and 2
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Fgure 13: Individual harmonic distortions

8.2 Pole Shifts

The proposed solution for reducing the harmonic
voltages distortions consists in shifting the pole 2
(-507.00 +j 3069.1) to the left and the pole 3
(-345.88 +] 4535.7) to the right, by varying the system
capacitor values. The first step here considered is the
shifting of pole 2. The sensitivities of pole 2 with
respect to the three system capacitors are presented in
Table7.

Table 7: Sensitivities of the pole 2 (1 +j rad)(sY/nfF)

Capacitance Pole 2 (-507.00 +j 3069.1)
(o] 7.1822 —j 3.1098
G 13.437 — j 91.449
G 18.926 - j 60.418

This table indicates that the pole 2 shifting can be more
efficiently accomplished by varying the capacitor C,. It
also indicates that the variation of capacitor C, is not
effective for the pole 2 shifting. The frequency
(imaginary parts divided by 20 of the pole 2 as a
function of changes in the capacitor values at each bus
is shown in Figure 14. This figure confirms the
sensitivity information given in Table 7. Thus the
capacitor at bus 2 was increased by 12 nF in order to
bring the frequency of pole 2 to a value smaller than
400 Hz. The system poles for the new C, value (20 ni)
are presented in Table 8. The original system poles are
also presented for easy comparison. The bus2 self-
impedance magnitude and the transfer-impedance
magnitude between buses 1 and 2, and buses 3 and 2 as
functions of frequency are presented in Figure 15 for
C,=20nF.
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Table 8: Comparison between original poles (C, = 8nfF)
and those obtained for C, = 20 nF

Original poles f(Hz)| Polesfor C2=20nfr |f (H2)
-290.085+ | 1583.60 | 252.0 | - 237.144+ ] 1354.97 | 215.7
-507.008 + j 3069.12 [488.5] - 331.089 +j 2499.21| 397.8
- 345,878+ | 4535.64 | 721.9| - 105.987 + ] 4153.33| 661.0
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Figure 15: [Z1|, Z2d and Zs,| for C, = 20 nfr

An undesirable effect produced when increasing the
capacitance G, was the shifting of pole 3 from 721.9Hz
to 661Hz. This pole shifting increases the voltage
distortions at 13" harmonic (650 Hz). However, the
shifting of pole 2 from 4885 to 397.8 improved
significantly the 11™ harmonic voltage distortions as
seen inFigure 16.
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Figure 16: Individual harmonic distortions for C, = 20 nf

The shifting to the right of pole 3 (661Hz) will be
pursued next, based on the consideration that
C,=20nF.

The sensitivities of poles 2 and 3 with respect to the
system capacitors are presented in Table 9. The
frequencies (imaginary parts divided by 2p) of the
poles 2 and 3 as functions of a continuous reduction in
the capacitance at each bus are plotted in Figure 17 and
Figure 18, respectively.

Table 9: Sensitivities of the pole 2 and 3 (1 +j rad)(sY/nF)

Capacitance Pole 2 (398 Hz) Pole 3 (661 Hz)
C1 0.27958 - j 0.97724 | - 3.5655 - j 63.053
G 7.6650 - j 22.906 2.9086 - j 10.971
Cs 12.490 - j 62.970 9.5310 - j 28.445
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Figure 17: Pole 2 frequency as a function of capacitor
reduction at a given bus
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Figure 18: Pole 3 frequency as a function of capacitor
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Note that the three curves in Figure 17 confirm the
sensitivity information given in the second column of
Table 9 for the complete range of capacitance variation.
On the other hand, Figure 18 confirms the information
from the third column of Table 9 just for capacitance
changes from 0 to 7nF approximately. From these
results one can see that variations on capacitance C will
promote significant shifting in pole 3 practically without
any changes in pole 2. Thus the capacitance at bus 1
was decreased by 10 nF in order to make the frequency
of pole 3 greater than 800Hz. The system poles for
G =20nF and C.1=13.9nF are presented in Table 10.
The original system poles are also presented for easy
comparison. The self-impedance of bus 2 and the
transferimpedances between buses 1 and 2, and buses 3
and 2 have their magnitudes as functions of frequency
presented in Figure 19. The individua harmonic
distortions are presented inFigure 20.



Table 10: Comparison between origind and for C> = 20 nk
and C1 = 13.9 nf- polesvaues

Origind poles | f(H2) :%?‘z’rl%; ITZFO”F f(H2)
-290.085+ j 1583.60]252.0 |- 271.788+ j 1426.71| 227.1
-507.008 + j 3069.12|488.5 | - 333.847+ j 2508.85 [ 399.3
345,878+ ] 4535.64|721.9| - 68.586+ ] 5139.13 | 817.9
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Fgure 19: |Z1d, 22| and 234 for & =20 nFand C1= 13.9nF
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Figure 20: Individual harmonic distortions for
Cz2=20nfrand C1 =13.9 nfr

Figure 20 shows that the highest distortions occur at
bus 2, indicating that the bus 2 self-impedance should
be reduced. This may be accomplished by increasing the
C; value in order to shift the pole 2 (399.3Hz) to the
left once again. It must be pointed out that the zeros of
the self-impedance for busk do not change with the
connection of new shunt elements at the same busk.
This is due the fact that the self-impedance becomes
null for as value equal to a zero of this self-impedance.
Consequently, the connection of a new shunt element at
this bus is short-circuited at this s value and the
equivalent impedance remains null. Thus s remains a
zero of the busk self-impedance. This fact was verified
initem 7, where the G, value was changed and the zeros
of bus 2 sdlf-impedance remained exactly the same (see
Figure 11). When increasing the value of C, the zeros
of bus 2 self-impedance do not change while the poles
are left-shifted towards their nearestneighbor zeros.
These pole shifts will promote the desired pole-zero
cancellation phenomena (seen in item 5) reducing the
corresponding peaks in bus2 self-impedance magnitude
curve as shown in Figure 21 for three additional
capacitance values. Figure 22 shows the individual

harmonic distortions for an additional capacitance value
equal to 18 nF (G =26nF, which corresponds to the
red plot in Figure 21). Thisis the solution proposed in
this paper. The numerical values for the individual
harmonic distortions plotted in Figure 13 (origina
system) and in Figure 22 (proposed solution) are
presented in Table 11, as well as the distortions limits
[23] adopted in this paper. The symbols used in this
table O. S, P.S, hand THD denote original system,
proposed solution, harmonic order and total harmonic
distortion, respectively.
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G =26nFand C;=13.9nF

Table 11: Harmonic voltages distortions for the original
system and proposed solution

Bus 1 Bus 2 Bus 3 IEC

os. | s |os|Ps| os P.S | %
&) M 1 1091 ()

11 | 614 127 | 824 | 312 8.26 171 350

13| 7.30 142 247 | 192 524 102 3.00

23 10279 | 0165 | 250 [ 0639 0.0436 0.0257 | 1.50

2510180 ( 0102 | 201 | 0530 0.0232 0.0132 | 150

35 ]0.0363 | 0.0196 | 0.905 | 0.259 | 0.00225 0.00121 | 113

37 ]10.0283 | 0.0152 | 0.798 | 0.230 | 0.00156 0.000839 | 1.08

THD| 954 192 | 926 | 377 9.78 199 8.00

9 Conclusions

This paper briefly described some features of the
HarmZs program for the analysis of harmonic problems
in power systens, as well as some theoretical
background needed for  understanding the
methodologies computationally implemented in the



program. This paper covered a large set of topics,
including:

Network-modeling methodologies suitable for modal
and conventional analysiss Y(s) matrix and
Descriptor Systems. A comparison between these
methodologies is presented.

Transfer function plotting capabilities.

Calculations and concepts of poles, zeros, their
sensitivities to system parameter changes and the
pole-zero cancellation phenomenon applied to
harmonic analysis.

Pol e residues, dominant poles and reduced models as
important concepts to help obtaining low order
dynamic network equivalents (modal equivalents) of
large scale power systems.

Formulation of a harmonic problem example using a
test system and its effective solution by modal
analysis.
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