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also be excited by HVDC controls of nearby converter 
stations [2]. 

SSR analysis invariably requires nonlinear time domain 
simulations in production-grade programs for 
electromagnetic studies. Numerous nonlinear time 
domain simulations must be carried out and experienced 
engineers are needed to interpret the results and infer 
system characteristics. Linear analysis techniques are 
also very much used, being com

 
Abstract 
The paper presents a comprehensive tool for small 
signal stability analysis of subsynchronous resonance. 
Results showing the application of this tool to a 
benchmark system are presented. These results show the 
power of small signal stability analysis in providing 
structural information about the sy
complement the conventional time domain simulation 
usually used in this kind of studies. 

Stability, Linear Analys

1 - INTRODUCTION 

Subsynchronous resonance (SSR) is a phenomenon that 
occurs in thermal power plants, whose turbo-generator 
components (synchronous generator, rotating exciter 
and multi-stage steam turbines) are connected through a 
very long shaft. These turbo-generator components are 
modeled as lumped masses and have considerably high 
inertia constants. Shaft sections are modeled by 
torsional springs, whose stiffness varies with the shaft 
section diamet
several natural modes of oscillation, known as torsional 
modes [1, 2]. 

SSR problems are due to the adverse interaction 
between the electrical network subsynchronous modes 
and the torsional modes of the turbo-generator. 
Electrical torques at subsynchronous frequencies occur 
in generators associated with heavily series-
compensated 
poorly-damped torsional modes to the point of causing 
shaft damage. 

Torsional modes may also adversely interact with fast 
excitation control systems of large turbo-generators 
equipped with power system stabilizers derived from 
rotor speed. 

tim  domain simulations. They provide a large set of 
tural information on the system in a direct and 
tive way. There are many possibilities offered by 
r analysis, including [3-7]: 

• Identification of the dominant characteristics of the 
individual oscillatory modes, determining their 
mode shapes and associated information on node 
points, points of largest amplitude, coherent 
groups, etc. 
Determination of the critical torsional or 
subsynchronous modes and the parameters that 
most influence them. Also the identification of 
mitigating actions involving parameter changes and 
using eigenvalue sensitivity formulas with respect 
to system parameter changes. 

• Proper location of sensors and actuators based on 
modal observability / controllability indices, 
properly designed controls though frequency 
domain, pole location, root-locus and eigenvalue 
sensitivities. 
Determination of the modal components that 
participate most in potentially dangerous SSR 
phenomena. 
Time simulation of the linearized equations, in 
descriptor system form, that can be computed 
much faster than the nonlinear simulation. The 
effective use of this function, while keeping in 
mind the inherent limitations of the linearized 
system analysis, can save valuable time in practical 
engineering studies. 

• Determination of potential SSR resonances by the 
frequency scan methodology, which despite its 
limitations, is widely us
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This paper presents results, obtained with the SSR 
module of the PacDyn computer program, for the IEEE 
First Benchmark System [8]. 

The presented results help demonstrate the several 
program features that make it attractive 
engineering studies. The eigenvalue and frequency 
response functions were validated by comparing the 
obtained results with those reported in [1, 2]. 

The time response function was validated 
the results obtained with the 
PSCAD/EMTDC [9], considering small disturbances. 

2 - SYSTEM MODE

SSR phenomena involve oscillations in the 20-40 Hz 
range that require the dynamic modeling of the RLC  
electrical networks. 

In addition to the electrical network
stator transients must be modeled (not needed for 
electromechanical studies) and also the torsional modes 
of the turbine-generator shaft [1]. 

Two alternative formulations are used in the SSR 
program module: the descriptor system approach a
the direct s-domain modeling. Both formulations have 
been applied in the study of electromagnetic transients 
[10-13] and power system harmonic analysis [14-18]. 

For the SSR analysis, which involves generator models 
and associated controls, the formulations must be 
carried out in d - q coordinates. 

The descriptor system modeling allows direct numeri
integration (trapezoidal rule) to produce linear time 
responses. It also allows obtaining the full system 
eigensolution through use of a QZ eigenroutine [19]. 

The Y(s) model allows the study of very large-scale 
systems, having distributed parameter and frequency 
dependent components and generates 
and yet sparse, system matrices. The Y(s) model, 
however, cannot be used if the complete eigensolution 
or the system time response is required. 

The descriptor system and the Y(s) models make use of 
a large set of numerical algor
the study of higher-frequency phenom
systems, such as SSR analysis, wh
subject of this paper. 

3 - THE COMPUTER PROGRAM 

A module for subsynchronous resonance analysis was
implemented into the PacDyn program. This module is 
called PacSSR and uses the same data files and 
databases of the electromechanical module [7]. 

The only differences in the data file is a new flag needed 
to specify the kind of simulation study required and a 

new data code used for inputting the mechanical data 
for the in
this little additional information, the program is able to 
properly model multi-machine power systems for SSR 
studies. 

This effective integration of the new module allows the 
use of the full set of numerical methods developed for 
the electr

deal with the Y(s) modeling of lar
systems. 

4 - FIRST BENCHMARK SYSTEM 

The IEEE First Benchmark System [8] was used to 
validate the SSR module and the developed 
methodology as well as illustrate the application of the 
computational program. Figure 1 shows the one-line 
diagram of the 60 Hz, single-machine-infinite-bus 
system with a series compensated transmission system, 
frequently utilized i

impedances are given in per-unit of the machine MVA 
base (892.4 MVA). 
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Figure 1 –

ical generator data are shown be
A base: 
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'
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"
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lX 13 pu r  = 0 pu 
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The automatic voltage regulator (AVR) is depicted in 
Figure 2. It should be pointed out that the original First 
Benchmark System does not have an AVR. 
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Figure 2 – Automatic Voltage Regulator 

The rotating mechanical system for the generator is 
comprised by six masses, as shown in Figure 3: 

HP IP LPA LPB GEN EXC

 
Figure 3 – Configuration of the rotating masses 

The multi-mass mechanical system parameters are 
presented in Table 1: 

Table 1 – Parameters for spring-mass system 
 

Mass H 
(s) 

D 
(pu/pu) Axis Stiffness 

K (pu/rad) 
HP 0.092897 0.104108   

   HP-IP 19.303 
IP 0.155589 0.058477   
   IP-LPA 34.929 

LPA 0.858670 0.019680   
   LPA-LPB 52.038 

LPB 0.884215 0.002280   
   LPB-GEN 70.858 

GEN 0.868495 0.024762   
   GEN-EXC 2.822 

EXC 0.0342165 0.010219   
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The symbol H denotes the inertia constant for each 
mass, D the damping factor of each mass and K the 
torsional stiffness of the shaft. The mechanical damping 
factors have different values from those in the original 
benchmark system. They were calculated to produce 
positive damping ratios in all torsional eigenvalues 
when considering a 0.35 pu series capacitance 
reactance. 

The steady-state mechanical torque is produced by the 
turbine sections in the following proportions: 30% (HP), 
26% (IP), 22% (LPA) and 22% (LPB). The exciter 
steady-state torque is assumed to be zero. 

5 - RESULTS 

The results presented in this paper, show the application 
of the PacSSR module of the PacDyn program to the 
IEEE First Benchmark System. 

In order to better describe the main functions of each 
controller and the adverse interactions it may induce, 
they were sequentially introduced into the IEEE First 
Benchmark System. AVR, power system stabilizes 

(PSS) and torsional filters are sequentially introduced, 
and their positive and adverse impacts are described 
through many results (time responses, eigenvalue 
results, mode shapes, frequency response, root locus). 

Figure 4 shows the time simulation results for a step 
disturbance applied to the synchronous machine 
mechanical power ( ), where the monitored 
variable is the synchronous machine rotor speed (

mecP∆
ω∆ ). 

The time response results obtained by the PacSSR 
module in PacDyn are very similar to those obtained by 
PSCAD/EMTDC, showing that the modeling for 
machine and electric network is compatible with the 
models used in known commercial programs for time 
simulation of electromagnetic transients. 
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Figure 4 – Results produced by PacSSR and PSCAD 

The frequency response of the transfer function where 
the input variable is the mechanical torque (pu) and the 
output variable is the generator (GEN) rotor speed (pu) 
is shown in Figure 5. 
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Figure 5 – Frequency response of ωg / Tmec

Figure 5 shows there are dominant poles [3] in 
frequencies around 10 rad/s, 100 rad/s, 130 rad/s, 
170 rad/s and 210 rad/s. These (purely imaginary) 
estimates were used in the Dominant Pole Spectrum 
Eigensolution (DPSE) algorithm [4], which converged 
to the following five complex eigenvalues: 



 
 

Table 2 – Transfer function dominant poles computed by 
DPSE (system without AVR) 

Transfer Function  
Dominant Poles  

Computed by DPSE 

Frequency 
(Hz) 

Damping 
(%) 

−0.01506 + j 202.79 32.27 0.01 
−0.12076 + j 160.28 25.51 0.08 
−0.00061 + j 127.23 20.24 0.00 
−0.00043 + j 99.797 15.88 0.00 
−0.48770 + j 10.286 1.64 4.72 
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The five complex-conjugate pairs may be used to obtain 
a reduced order model [3,4]. The comparison between 
the full model and this reduced order model in the 
frequency domain is presented in Figure 6. The curves 
are visually coincident over the 0-40 Hz frequency 
range. 
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Figure 6 – Comparison between the frequency responses of 
ωg / Tmec considering a 10th order reduced model and the full 

model. 

The time responses for the speed deviations of the 
various masses are shown in Figure 7. The transfer 
function input utilized is the mechanical torque (Tmec) 
and the output variables are the speeds of the various 
masses. The generator active power deviations are 
shown in Figure 8. 

It should be noted that the electromechanical mode is 
fairly damped (damping ratio of 4.72%) but the 
torsional modes are very low damped (about 0%), so 
there are sustained oscillations of relatively small 
amplitude. 

The full eigensolution of the system was obtained by 
using the QZ method. A high participation factor was 
the index used to identify the nature of each mode, as 
indicated in the third column of Table 3. 
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Figure 7 – Time response of the speeds of the various masses 
following a step of 0.1 pu in the mechanical torque Tmec
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Figure 8 – Time response of the terminal active power for a 
step of 0.1 pu in the mechanical torque Tmec



 
 

Table 3 – System poles without AVR – SSR model 
 

Poles without AVR Freq. (Hz) Description 
−4.6337 + j 616.62 98.14 Supersynchronous 
−3.3300 + j 136.79 21.77 Subsynchronous 
−0.1379 + j 298.18 47.46 Torsional 
−0.0151 + j 202.79 32.27 Torsional 
−0.0121 + j 160.28 25.51 Torsional 
−0.0006 + j 127.23 20.24 Torsional 
−0.0004 + j 99.797 15.88 Torsional 
−0.4877 + j 10.319 1.64 Electromechanical 

−41.198 0 Generator 
−25.425 0 Generator 
−3.0734 0 Generator 
−0.2486 0 Generator 

 

This eigenvalue list produced when using the SSR 
model (Table 3) should be compared with the 
eigenvalue list obtained using the model for 
electromechanical stability analysis (Table 4). There is 
good agreement for the low frequency eigenvalues 
produced by these two modeling levels. 

Table 4 – System Poles without AVR – Electrom. Model 
 

Poles without AVR Freq. (Hz) Description 
−0.4971 + j 10.378 1.65 Electromechanical 

−41.258 0 Generator 
−25.426 0 Generator 
−3.0735 0 Generator 
−0.2487 0 Generator 

The speed mode-shapes of each rotating mass carry 
information on the nature of each oscillatory mode 
(either torsional or electromechanical). The mode-
shapes of these modes are shown in Figure 9. It should 
be noted that for the electromechanical mode (1.64 Hz), 
all masses oscillate together. Each one of the five 
torsional modes (between 15.9 Hz and 47.5 Hz) has a 
specific characteristic or “shape”. For example, 
regarding the lowest frequency torsional mode, the three 
masses on the left side oscillate at 15.9 Hz against the 
three masses on the right side. 
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Figure 9 – Speed Mode-shapes of the mechanical masses 

The value initially selected (XC = 0.35 pu) for the series 
capacitor reactance did not produce subsynchronous 
resonance phenomena because all torsional modes have 
positive damping ratios (all poles with negative real 
parts). Using the Root Locus function in PacDyn it is 
possible to identify the XC values that could produce 
subsynchronous resonance. 

Figure 10 shows the Root Locus plot obtained when 
varying the series capacitor reactance XC. There is a root 
locus branch representing the network subsynchronous 
mode and another four branches representing the 
torsional modes of the rotating masses. 

As the reactance XC is increased, the frequency of 
subsynchronous network mode is reduced, while the 
frequency of supersynchronous network mode is 
increased. Whenever the frequency of the network 
subsynchronous mode approaches the frequency of a 
torsional mode, they strongly interact: the net effect is 
that the subsynchronous pole shifts to the left while the 
torsional pole shifts to the right and the system becomes 
unstable. This adverse dynamic interaction is known as 
subsynchronous resonance phenomena. The critical 
values of the reactance XC, which cause the maximum 
shifts of the torsional modes to the right, are shown in 
Figure 10 and in Table 5. Figure 11 is an enlarged view 
of Figure 10 for the most severe resonance. 
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Figure 10 – Root-Locus of XC

Table 5 – Critical values of series capacitance
 

Capacitor  
Reactance 

(pu) 
Pole F

0.1846 1.3854 + j 202.83 
0.2844 1.2311 + j 160.58 
0.3786 0.5808 + j 127.00 
0.4728 4.7012 + j 98.84 
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Figure 11 – Detail of Root-Locus of XC

The linear time domain simulation for this critical value 
of series capacitor reactance (XC = 0.473 pu) is shown in 
Figure 12 and indicates oscillatory instability due to 
subsynchronous resonance at 15 Hz. The applied 
disturbance was a step of 0.1 pu in the mechanical 
torque of the generator and the monitored variable was 
the generator speed. 
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Figure 12 – Linear time response for XC = 0.473 pu 

Figure 13 shows the same plot as Figure 12, the 
difference being that the vertical scale is now enlarged. 
The same simulation was then performed in the 
PSCAD/EMTDC program, and the result obtained is 
presented in Figure 14. A comparison between Figure 
13 and Figure 14 shows that the linear model is quite 
accurate to detect small-signal subsynchronous 
resonance. 
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Figure 13 – Detail of linear time response for XC = 0.473 pu 
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Figure 14 – Non-linear time response for XC = 0.473 pu 

The AVR was then included, considering the XC 
reactance equal to −0.35 pu. The full eigensolution of 
the system obtained using the QZ method for this case is 
given in Table 6. 

Table 6 – Poles for SSR model with AVR 
Poles with AVR Freq. (Hz) Description 
−4.6330 + j 616.63 98.14 Supersynchronous 
−3.2791 + j 136.78 21.77 Subsynchronous 
−0.1379 + j 298.18 47.46 Torsional 
−0.0151 + j 202.79 32.27 Torsional 
−0.1209 + j 160.28 25.51 Torsional 
−0.0021 + j 127.23 20.25 Torsional 
−0.0063 + j 99.797 15.88 Torsional 
−8.7594 + j 11.650 1.85 Exciter 
−0.0043 + j 10.287 1.64 Electromechanical 

−45.941 0 Generator 
−25.417 0 Generator 
−2.2284 0 Generator 

Comparing the results obtained for the case with and 
without AVR, one should note that the AVR has a low 
interaction with the torsional modes and this interaction 
is positive, yielding a little extra damping to some of 
these modes. On the other hand, the AVR adversely 
interacts with the electromechanical mode causing 
negative damping torque [2]. The electromechanical 
mode has now become very poorly damped. Figure 15 
shows the time response of the rotor speed, for a 0.1 pu 
step in the mechanical torque. The result shows 
sustained oscillations due to the very poorly damped 
electromechanical mode. 
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Figure 15 – Time response of SSR Model with AVR 

The eigenvalue results obtained when using the SSR 
model (Table 6) are compared with those obtained for 
the electromechanical stability model (Table 7). This 
comparison shows there is a good agreement of the low 
frequency eigenvalues obtained by the two models. 

Table 7 – All Poles with AVR – Electromechanical Stability 
Model 

Poles without AVR Freq. (Hz) Description 
−8.3369 + j 11.414 1.82 Exciter 
−0.0329 + j 10.595 1.69 Electromechanical 

−46.607 0 Generator 
−25.425 0 Generator 
−2.2295 0 Generator 

Xc=0.508 

Xc=0.473Xc=0.532 

Xc=0.438 

Xc=0.412

Xc=0.412 

Xc=0.438 

Xc=0.473 

Xc=0.508 

Xc=0.532 



 
 
The same simulation was then repeated for the 
electromechanical model and the results are shown in 
Figure 16. 
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Figure 16 – Time response of Electromechanical Stability 

Model with AVR 

Despite causing negative damping torque, the AVR is 
needed to promote fast voltage regulation. Before AVR 
inclusion the mode associated with the generator 
voltage dynamics was −0.2486, which corresponded to a 
time constant of 4 s. Now it is −2.2284, which 
corresponds to a time constant of 0.45 s. Figure 17 
shows the voltage of generator after the switching of a 
10 Mvar reactor at the generator bus. In the case without 
AVR the voltage drops and remains at a low value, but 
in the presence of AVR the voltage recovers pretty fast. 
There is, however, a low-amplitude, sustained 
oscillation due to the electromechanical mode. The 
electromechanical model was used, but similar results 
would be obtained when using the SSR model. 
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Figure 17 – Time response of the Voltage for the cases with 

and without AVR 

A value of 0.35 pu for XC, which does not cause 
subsynchronous resonance was used to design a power 
system stabilizer (PSS) to further damp the 
electromechanical mode (see Figure 18): 

2

01.01
07.01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

s
s

s
s
⋅+

⋅
31

3ω pssV
5.5

 
Figure 18 – Power System Stabilizer (PSS) 

The system eigenvalues for XC = 0.35 pu and in the 
presence of the designed PSS, are listed in Table 8. The 
electromechanical mode was damped by the PSS, but 
two torsional modes were shifted to the right, causing 
the instability. The torsional instabilities are due to 
adverse interactions induced by the PSS at higher 
system frequencies. 

Table 8 – All Poles with PSS – SSR Model 
 

Poles Freq. (Hz) Description 
−4.6311 + j 616.63 98.14 Supersynchronous 
−3.4303 + j 136.55 21.73 Subsynchronous 
−0.1378 + j 298.18 47.46 Torsional 
+0.0048 + j 202.75 32.27 Torsional 
−0.1074 + j 160.19 25.49 Torsional 
+0.0705 + j 127.32 20.26 Torsional 
+0.2175 + j 100.30 15.96 Torsional 
−7.0202 + j 12.784 2.03 Exciter 
−2.1476 + j 10.338 1.65 Electromechanical. 
−101.73 + j 10.471 1.67 PSS 

−42.069 0 Generator 
−25.416 0 Generator 
−2.1632 0 Generator 
−0.3375 0 PSS 

The time response of the generator speed for a step in 
the mechanical torque is shown in Figure 19. The 
system is unstable. 
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Figure 19 – Time response of SSR Model with PSS 

In order to avoid adverse torsional interaction due to 
PSS action, the PSS input signal must have low 
observability of the torsional modes. This proper signal 
conditioning may be obtained by applying a torsional 
filter to the speed signal. This filter avoids the shifts of 
the torsional modes to the right when the PSS loop is 
closed. The torsional filter utilized is pictured in Figure 
20. The filter parameters were chosen to produce a zero 
in the 15 Hz (minimum frequency to appear a torsional 
mode) and so that the poles needed for the filtering, did 
not produce a high gain in the electromechanical 
frequency range, in order to avoid system instability [2]. 
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Figure 20 – Torsional Filter for PSS 



 
 
The frequency response of the filter is shown in Figure 
21. The torsional filter gain remains below 0.015 pu for 
frequencies higher than 100 rad/s (15.9 Hz), which 
explains the apparently zero value for the filter 
amplitude at this frequency range. 
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Figure 21 – Frequency Response of the Torsional Filter 

The simulation of the filtered speed, before the closing 
of the PSS loop (using a zero gain after the filter), is 
shown in Figure 22. The filtered signal, for practical 
purposes, does not have torsional components. The 
comparison with the non-filtered speed is shown in 
Figure 23. 
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Figure 22 – Time Response of the Filtered Rotor Speed 
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Figure 23 – Comparison between filtered and non-filtered 

Time Response of Rotor Speed 

The filter introduced a moderate amplification and lag 
to the non-filtered speed signal. The parameters of the 
PSS may be adjusted to compensate for these changes. 

The gain was reduced from 5.5 to 3.6 and the time 
constant of the lead block numerator was increased from 
0.073 to 0.094. These parameters were adjusted so as to 
maintain the same damping ratio for the 
electromechanical mode. 
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Figure 24 – PSS for Filtered Rotor Speed 

The system eigenvalues considering the PSS with the 
torsional filter are listed in Table 9. The torsional filter 
effectively minimized the adverse interaction among the 
PSS and torsional masses, since it damped the 
electromechanical mode (damping ratio of 20.1%), 
without significantly shifting the torsional modes to the 
right. The exciter mode became slightly less damped but 
still sufficiently high (damping ratio was reduced from 
48.2% to 39.8%) due to the higher loop gain around 
2 Hz. 

The time response of the generator speed for the same 
0.1 pu step in mechanical torque is shown in Figure 25. 
The system is stable with a damped electromechanical 
mode and sustained torsional oscillations at 15 and 20 
Hz. These oscillations are compatible with the utilized 
damping constants. Comparing tables 3, 6 and 9, one 
can see that the PSS with the torsional filter did not 
cause negative damping torques at the torsional mode 
frequencies. 

Table 9 – All Poles with PSS and Torsional Filter – SSR 
Model 

 

Poles Freq. (Hz) Description 
−4.6330 + j 616.63 98.14 Supersynchronous. 
−3.2793 + j 136.78 21.77 Subsynchronous 
−0.1379 + j 298.18 47.46 Torsional 
−0.0154 + j 202.79 32.28 Torsional 
−0.1216 + j 160.28 25.51 Torsional 
−0.00201 + j 127.23 20.25 Torsional 
−0.00474 + j 99.795 15.88 Torsional 
−6.2244 + j 14.344 2.28 Exciter 
−2.1425 + j 10.334 1.65 Electromechanical 
−12.370 + j 27.820 4.43 Filter 
−24.670 + j 49.470 7.87 Filter 
−100.41 + j 3.6784 0.59 PSS 

−41.855 0 Generator 
−25.414 0 Generator 
−2.1882 0 Generator 
−0.3360 0 PSS 
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Figure 25 – Time response including PSS with torsional filter 

6 - Conclusions 
A SSR module was implemented in a comprehensive 
tool for small signal analysis. Subsynchronous 
resonance studies were carried out on the IEEE First 
Benchmark System, showing the advantages of using 
the linear analysis in obtaining structural information 
about subsynchronous resonance. The modeling used in 
the computational program produced equivalent results 
to those obtained with production-grade software for 
electromagnetic transient time simulation, which is 
generally employed in these studies. The presented 
results helped emphasize the importance of using linear 
techniques in SSR analysis. 
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