
 
 

 

  

 
 

 
 

IX SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO 
DA OPERAÇÃO E EXPANSÃO ELÉTRICA 

  
 

 
SP–110 

 
 

 
 

 
 

 

 

  

 

 

 

 
IX SEPOPE 
23 a 27 de maio de 2004 
May, 23th to 27rd – 2004 

Rio de Janeiro (RJ) – Brasil 

IX  SYMPOSIUM OF SPECIALISTS IN ELECTRIC 
OPERATIONAL AND EXPANSION PLANNING 

 
 

Continuation Power Flow With the Help of the Cric Method 
 

 
Fritz Walter Mohn 1,2  A. C. Zambroni de Souza1   Nelson Martins 3 

1- Grupo de Engenharia de Sistemas - GESis, Escola Federal de Engenharia de Itajubá,  BRAZIL 
2- Agência Goiana de Regulação, Controle e Fiscalização de Serviços Públicos - AGR CEP 74 000-000, Goiânia, GO - BRAZIL  
3-    CEPEL – Centro de Pesquisas de Energia Elétrica, Ilha do Fundão , Rio de Janeiro, Brazil 
 
ABSTRACT – This paper studies some decoupled techniques applied to continuation method. Because continuation method 
tends to provide accurate results and trace the bifurcation diagram, it tends to be appealling. The only restriction is the huge 
computational time required. In order to reduce this burden, each operating point is calculated according to the full Newton 
method, providing a benchmark for the other methodologies. These methodologies are based on the fast decoupled power flow, 
CRIC method and modified CRIC method. The idea is to study how fast and accurately the system load margin may be 
calculated with no loss of information regarding the critical buses. The tests are executed using some real power systems, and 
all the system limits are taken into consideration. 
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I. INTRODUCTION On assessing a power system 
security, voltage collapse becomes a matter of concern, 
since it may be a source of serious problems. Most of the 
works in the literature emp loy a power flow model, which 
has driven many researchers to assess voltage collapse 
under a static point of view, even though the consequences 
of the phenomenon are dynamic [1]. 
 Several papers have shown that the voltage 
collapse point may be associated with a saddle node 
bifurcation where a zero real eigenvalue is identified. 
Therefore, power system Jacobian becomes singular. 
Because no solution is obtained beyond this critical point, 
this commonly known as the maximum loadability point. It 
is also known, from the literature, that voltage collapse is a 
local or at most regional phenomenon [2]. Hence, 
identifying the system critical bus, i.e., the bus where the 
problem is originated, is also important. In this sense, 
continuation method [3-5] tends to provide accurate results 
regarding the load margin whereas identifying correctly  the 
system critical buses. On the other hand, the computational 
time involved may be a barrier, since several operating 
points need to be evaluated in order to find the bifurcation 
point. 
 From the summary above, it can be concluded 
that reducing the computational time associated with 
continuation method could play an important role on 
voltage collapse analysis. That is the aim of this paper. For 
this purpose, a fast decoupled continuation method is 
proposed. With this purpose, fast decoupled-based 
continuation methods have been proposed [6, 7, 8], and 

good results have been reported. However, as a system is 
loaded, the decoupling may become weaker, and 
convergence problems are expected. Critical bus 
identification is also impacted [6]. As a consequence, this 
function requires the computation of the full load flow 
Jacobian.  
 In this paper, a continuation power flow is 
proposed based on the Cric method [9]. The CRIC method 
is also based on the decoupling of the set of the power flow 
equations, but the reactive power process takes into 
consideration the active power. The results obtained are 
encouraging, since the accuracy is kept, whereas the 
computational time is reduced and the critical buses 
identification is correctly obtained. The described tests 
were carried out for some Brazilian sample systems. 
 
 
II. THE CRIC METHOD 
 
 Reference [6] proposes the use of fast 
continuation power flow in the continuation method. An 
improvement in the decoupled method is the CRIC 
method, presented by [9]. Assume the set of equations: 
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Hence: 
∆P = H∆θ  + N∆V          (2) 
∆Q = M∆θ + L∆V           (3) 

 
Equations (2) and (3) represent the active and reactive 
power cycles, respectively.  The CRIC method is based on 
two principles: 
 
ü During the reactive power cycle, the power active 

injections are considered to be constant. 
ü Considering the assumption above is equivalent to 

assume the active power flows in the branches as 
constant. 

 
For the active power cycle (2), the second term vanishes, 
since no voltage level variation is considered,  
 

∆θ = H-1∆P (4) 
As for the reactive power cycle, one has: 

0   =  H∆θ  + N∆V (5) 
∆Q = M∆θ + L∆V (6) 

Yielding: 
∆V = L’-1 ∆Q (7) 

where: 
L’=(L-MH-1N) (8) 

Note that equation (8) keeps the coupling during the 
reactive power cycle. However, matrix L’ is not sparse, 
making the process infeasible for large power systems. The 
alternative is to obtain a sparse matrix that could present 
the same characteristics as presented by matrix L’. For this 
sake, the equations are rewritten in such a way that the 
active power flows in the branches are considered as 
constant: 

)cos(2 αθ −+−= ikkiikiikik VVYVaGP  (9) 

)sen(22 αθ −+−= ikkiiksikiiikik VVYBVVaBQ  (10) 

If P ik is constant, the following expression arises:  
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From equation above, the CRIC Jacobian and the 
sensitivities ∂Q/∂V are obtained, whereas the sparsity is 
kept.  
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where: 
 
a : transformer tap. 
Bsk : transmission line susceptance. 
Gik, Bik e Yik: elements of admittance of branch ik.  
α: angle between B and G.  
III. THE CONTINUATION METHOD 
 
Continuation methods may be used to trace the path of a 
power system from a stable equilibrium point up to a 
bifurcation point [3].  Such a methodology is based on the 
following system model: 

f(x, λ) = 0     (14) 
where x represents the state variables and λ is a system 
parameter, used to drive a system from one equilibrium 
point to another.  This type of model has been employed 
for numerous voltage collapse studies, with λ been 
considered as the system load/generation increase factor or 
power transfer level.  Two steps move the system along the 
bifurcation path: 
 
1- Predictor step, which defines a direction for load and 
generation increase. Tangent vector may be used for this 
purpose, and is given by: 

TV=
∆θ
∆V
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where J is the load flow Jacobian, θ  and V the state 
variables (angle phase and voltage magnitude, 
respectively), and Po and Qo are net active and reactive 
powers connected to each bus. TV is the acronysm for 
tangent vector. The predictor step is then given by: 

∆λ = 1/||TV|| 

where ||.|| stands for tangent vector norm.  From this 
expression, the steeper the curve, the smaller the predictor 
step, and vice versa.  The method takes bigger steps when 
the system is far away from the bifurcation point and 
smaller steps as the bifurcation is approached.  The actual 
operating point is obtained with the help of the corrector 
stage. 

2- Corrector step, obtained by the inclusion of an extra 
equation.  Such an equation comes from the fact that the 
predictor and corrector vectors are perpendicular to each 
other.   
 
The methodology above describes the continuation method 
in a general sense. The structure of the Jacobian matrix 
associated with this method is given by: 
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Where, H, N, M and L stand for the power flow Jacobian 
submatrices, and vector K1 represents the predetermined 
generation and load increase direction. FF1 and KF1 
correspond to parameterization equation in the 
continuation power flow. During the “normal” region of 
continuation, kF1 equals one and FF1 is a zero row.  
 

IV. CONTINUATION METHOD AND CRIC  

 

Applying CRIC to the continuation method follows the 
same approach as seen in [6], when the fast decoupled 
method is used. The aim of the method is to calculate the 
load margin and identify the critical buses. Besides this 
output, a special study about the singularity of the matrix 
LC used in the CRIC method is also carried out. In order to 
speed up the calculation process, an alternative is 
proposed, which consists of keeping the matrix LC 
constant for each equilibrium point during the bifurcation 
path determination. This is called fast CRIC. The 
characteristics considered in the CRIC continuation 
method are described next: 

 

Predictor Step Size 

It is obtained, in the classical method, with the help of 
tangent vector. Such a vector is also used here, but it is 
employed in relation to the matrix LC, as shown next:
  

[ ]    Q/ o
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Index of Collapse (IC) 

Reference [10] analyzes in detail a set of voltage collapse 
indices. In particular, it shows that tangent vector 
converges to the center manifold, which enables one to 
identify the vanishing eigenvalue as: 

 

* *tIC TV J TV=    (18) 

 where :  TV è Tangent Vector 

J     è Jacobian 
As the system approaches the bifurcation, IC tends to zero 
quite rapidly. The IC index may therefore be used to stop 
the calculation with no loss of accuracy, since the 
continuation method calculates a large number of operating 
points close to the bifurcation.  

 

Identification  of Critical Buses 

As already proposed in the literature, tangent vector may 
be used as a tool to identify the system critical buses [10]. 
This is based on the fact that its ent ries provide the 
sensitivity of the state variables as a function of the system 
parameter. In this paper, this identification is also 
investigated when tangent vector is obtained from matrix 

LC, and the results will be compared with the ones 
obtained from the complete load flow Jacobian. 

V. RESULTS 

Four practical systems are used to test the ideas proposed 
in the paper. These systems contain 214, 412, 721 and 
1381 buses, respectively, and all of them are studied 
considering their true operating limits. For each system, 
the load margin is calculated with the help of the 
continuation method. Each equilibrium point is obtained 
by the Full Newton method (FN), Fast decoupled load flow 
(FD), CRIC (NC) and Fast CRIC (FC).  
At this part of the test, tangent vector is used according to 
the complete load flow Jacobian . Hence, for each 
equilibrium point, the full Jacobian is calculated, and 
tangent vector is derived. It ensures the same step size for 
all the methods. The stopping criterion is not used at this 
time. Table I presents the results obtained. 
 
 
 
 
 
Table I – Load Margin and Computational Time (Case 1) 

System Load Margin (pu) Time (pu) 

 FN FD NC FC FN FD NC FC 

214 1,326 1,326 1,291 1,300 1,00 1,032 0,983 0,763 

412 1,115 1,116 1,115 1,115 1,00 0,650 0,910 0,631 

721 1,061 1,060 1,060 1,060 1,00 0,830 0,927 0,789 

1381 1,119 DIV 1,118 1,117 1,00 DIV 0,831 0,703 

It is important to note that because the computational time 
may vary as a function of the computer used, it is 
measured here in relation to the time observed when the 
Full Newton method is used. From now on, this will be the 
reference. Note that the system with 1381 buses presents 
divergence problems when the Fast Decoupled method is 
used. This system contains several transmission lines with 
high ratio R/X. 
The tests presented in Table I are executed again. This 
time, the stopping criterion is used. As for the decoupled 
methods, when the number of iterations become high or 
divergence problems occur, the method is changed to the 
Full Newton. 

 
Table II –Load Margin and Computational Time (Case 2) 

System Load Margin (pu) Time (pu) 

 FN FD NC FC FN FD NC FC 

721 1,060 1,060 1,060 1,060 0,871 0,767 0,812 0,739 

1049 1,160 1,161 1,161 1,161 0,648 0,474 0,552 0,530 

1381 1,106 1,106 1,106 1,106 0,714 0,740 0,626 0,596 

1900 1,048 1,048 1,048 1,048 0,659 0,662 0,672 0,568 

 



It is important to mention that the computational time 
shown in Table I is obtained as a function of the Full 
Newton method observed in Table I. This time, because 
the decoupled method may change to the Full Newton, the 
fast decoupled method does not fail, and the system with 
1381 buses is correctly analyzed. 

 

Besides the assumptions considered for the Case 2, the fact 
that the decoupled methods may converge easily for 
operating points far from the bifurcation point may be 
explored. For the full Newton method, the load factor 
variation is given by: 
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where K is a constant. For the fast decoupled method, one 
has: 
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As for the CRIC method, tangent vector is given by 
equation (17). Calculating tangent vector according to the 
expressions above yields different step sizes for each 
method. The results obtained considering the assumptions 
already considered in the Case 2 with different step sizes  
are shown in Table III. 

 
Table III – Load Margin and Computational Time (Case 3) 

System Load Margin (pu) Time (pu) 

 FN FD NC FC FN FD NC FC 

721 1,060 1,060 1,060 1,060 0,871 0,414 0,525 0,545 

1049 1,160 1,191 1,191 1,161 0,648 0,184 0,257 0,166 

1381 1,106 1,106 1,108 1,108 0,714 0,730 0,176 0,233 

1900 1,048 1,047 1,050 1,049 0,659 0,392 0,256 0,243 

From Table III one can see that the computational time 
tremendously reduced, whereas the accuracy in the results 
is not compromised.  

 

Classification of the Critical Buses  

Table IV shows the 5 most critical buses for the test 
systems.  Such a classification is carried out with the help 
of the complete Jacobian and the CRIC matrix. 

Table IV – Critical Buses Classification for  J and 
CRIC 

System Matrix 1 2 3 4 5 

J 119 114 109 478 477 
721 

LC 470 478 109 463 458 

J 308 309 311 756 312 
1049 

LC 308 309 311 312 756 

J 1357 1356 1246 1245 1247 
1381 

LC 1356 1355 1245 1244 1052 

J 1357 1352 1367 1298 1300 
1900 

LC 1357 1359 1367 1342 1298 

 

Observe that the  worst ranking applying tangent vector 
with matrix CRIC went to the system of 721 buses.  

If that classification obtained with tangent vector applying 
Jacobiana full to consider only the relative components to 
the module of the voltage, the classification becomes 
similar:  

 

Table V – Critical Buses ranking for J and CRIC – Just 
Voltage Level in J 

System Matrix 1 2 3 4 5 

J  109   478   477   476   470  
721 

LC  470   478   109   463   458  

 

VI. CONCLUSION 

 This paper addressed the problem of load margin 
calculation when the CRIC method is incorporated into the 
continuation power flow. The characteristics of the CRIC 
method are described and some important aspects related 
to voltage collapse are exploited. The results obtained with 
the help of some real systems show that the method may be 
effective for load margin calculation, since the 
computational time is reduced and the accuracy is 
preserved. 

 Besides the reduction in the computational effort, 
the method showed to be robust, since no divergence 
problem was reported when some features incorporated to 
the method were considered. The system operating limits 
were fully considered in all tests. The authors believe there 
is room for further improvements and will continue this 
investigation 
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