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IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS

ADVERSE EFFECTS ON INTRA-PLANT MODES
CAUSED BY IMPROPERLY DESIGNED
POWER SYSTEM STABILIZERS



ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

»Large systems = most multi-unit power plants are
usually modeled as single equivalent machines

>Reduces the number of system states, but...

>Does not capture the intra-plant dynamics

»When improperly designed, PSSs may cause adverse
Interactions and intra-plant mode instability
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

>»SMIB, pole-zero map of [Aw,/AVgeg,]
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

»SMIB system — PSS (center frequency = 1.0 Hz)
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

>2-machine system, pole-zero map of [A®,/AVq,]
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

»2-machine system, pole-zero map of [(A®w; + A®,)/AVrgp]
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

»Map of zeros for different number of modeled machines
(from 1 to 7)
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

>7 Machines, 1 PSS
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

»2-Machine system — 1 PSS (center frequency = 1.0 Hz)
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

»2-Machine system — 2 PSSs (center frequency = 1.0 Hz)
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ADVERSE EFFECTS ON INTRA-PLANT MODES CAUSED BY PSS

»2-Machine system — 2 PSSs (center frequency 5.0 Hz)
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IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS

UsING ZEROS ToO UNDERSTAND THE ADVERSE

ERMINAL VOLTAGE TRANSIENTS INDUCED BY THE
PRESENCE OF PSSs



ADVERSE IMPACTS ON TERMINAL VOLTAGE DUE TO PSSs

»Studying zeros to understand the adverse voltage
transients induced by the presence of PSSs

»Comparing the performances of PSSs derived from
either rotor speed or terminal power signals
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ACTIVE POWER CHANGES FoLLowWING APMEC IN SMIB
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REACTIVE POWER CHANGES FOLLOWING APMEC IN SMIB
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POLE-ZERO MAP FOR AQT/ APmec (PSSPT)

» Zero near the origin causes bigger overshoot in the step response
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POLE-ZERO MAP FOR AQT/ APmec (PSS®)
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IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS

HoPF BIFURCATIONS IN THE
CoONTROL PARAMETERS SPACE



HOPF BIFURCATION ALGORITHMS

»Compute parameter values that cause crossings of the
small-signal stability boundary by critical eigenvalues

» Hopf bifurcations are computed for:

3 Single-parameter changes

>Multiple-parameter changes (minimum distance in

the parameter space)

Impact of Interactions Among Power System Controls



HOPF BIFURCATIONS — TEST SYSTEM UTILIZED

> Brazilian North-South Interconnection: 2,400 buses, 3,400 lines, 120

generators and associated AVRs, 46 stabilizers, 100 speed-governors,
4 SVCs, 2 TCSCs, 1 HVDC link

> Matrix dimension is 13,062 with 48,521 nonzeros and 1,676 states
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HOPF BIFURCATIONS — TEST SYSTEM PROBLEM

»Two TCSCs located at each end of the North-South
Intertie, equiped with PODs to damp the 0.17 Hz mode

»The Hopf bifurcation algorithms were applied to compute
eigenvalue crossings of the security boundary (5%

damping ratio) for gain changes in the two PODs
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ROOT CONTOUR WHEN REDUCING THE GAINS OF THE 2 TCSCs
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ROOT CONTOUR WHEN INCREASING THE GAINS OF THE 2 TCSCs
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DETERMINING SECURITY BOUNDARIES THROUGH HOPF (5%)
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DETERMINING SECURITY BOUNDARIES THROUGH HOPF (5%)
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HOPF BIFURCATIONS - CONCLUSIONS

»Two crossings of the security boundary were found, both
being related to POD gains far away from the nominal
values(1 pu):

3.529>K >0.108

»Computational cost of Hopf bifurcation algorithm
3 Single-parameter changes : 0.16 s (per iteration)

>Multiple-parameter changes : 0.35 s (per iteration)
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IMPACT OF INTERACTIONS AMONG POWER SYSTEM CONTROLS

SIMULTANEOUS PARTIAL PoOLE PLACEMENT
FOR
PoOWER SYSTEM OscILLATION DAMPING CONTROL



INTRODUCTION

» Purpose = choose adequate gains for the Power
System Stabilizers (PSSs) installed on generators of a
test system

» PSSs = used to improve the damping factor of
electromechanical modes of oscillation

» Stabilization procedure:
2 Determine the system critical modes
2 Determine the machines where the installation of

PSSs would be more effective

> Assess each PSS contribution to the control effort

2 Tune the gains of the PSSs using transfer function
residues associated with other information
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TEST SYSTEM

» Simplified
system

representation of the Brazilian Southern

» Characteristics:
2 Southeastern region represented by an infinite bus

> Static exciters with high gain (Ka =100, Ta=0.05s)

Itaipu Southeast

| \
Os \

Fom
Salto Santiago —@ South

é Salto Segredo
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CRITICAL OSCILLATORY MODES

Critical electromechanical modes of oscillation

Real Imag. |Freq. (Hz) | Damping
A1 | +0.15309 | £5.9138 | 0.94121 | -2.59%
A2 | +0.17408 | £4.6435 | 0.73904 | -3.75%

Parameters related to the phase tuning of the PSSs

Number of lead blocks Tw (S)

Tn (s)

Td (3)

2 3

0.100

0.010
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CRITICAL OSCILLATORY MODES

A, : Itaipu x (South + Southeast)
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CRITICAL OSCILLATORY MODES

A, : Southeast x (ltaipu + South)

ltaipu A, =+0.17+]4.64 / Southeast

~ \
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CONTRIBUTION OF EACH PSS TO THE A SHIFT
» A change in the gain vector 4K will produce shifts in
both the real and imaginary parts of the eigenvalues

» The contribution of each PSS to these shifts can be
estimated using the matrix of transfer function residues

> For A, and three PSSs:

el Rel rl AVPsst | R AVpss ] R AVpss3 T [ AK |
{e 1‘}_ | \AVRer1 AVRer2 AVRers /]| ax
=| T 7 [ AK2
Im({A4 | im Rl 2VPsst ] R AVpss? ] R AVpsss || ax
| \AVRerr AVREF2 AVgepg ) | 173
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CONTRIBUTION OF EACH PSS TO THE A SHIFT

> Normalized contribution of each PSS in the shifts of

the real and imaginary parts of the two critical

eigenvalues

Re[Res(Vpss/Vref)]

7» |
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Oscillatory Modes
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A, —Southern mode

PSS Location
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POLE-ZERO MAP OF [A®/AV (]

» Map of poles and zeros for the matrix transfer function
[Aw/AV (] With PSS in Itaipu
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Root-Locus for Gain Changes at Itaipu PSS

01 ; B

-4, -2.88 -1.75 -0.63 0.5
Real

Impact of Interactions Among Power System Controls



POLE PLACEMENT — 2 MODES AND 2 PSSS

Improve the damping factors of two critical oscillatory
modes by the use of two PSSs installed in:

2 [taipu and Salto Segredo

» The gains of the PSSs are computed for a desired shift
In the real part of the eigenvalues

> Gain vector AK will be calculated at each Newton
iteration using the following relation:

i -1
| Rel Rl AVpsst al R AVpss) a o
AKy AVREF1 AVRgfF2 Ay

Re

AK2 | | Re R[AVP881 ij R[AVPSSZ /1) - [AL ]
AVREF1 AVREE?2
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POLE-ZERO MAP OF [A®/AV gy o

» Map of poles and zeros for the matrix transfer function
[A®/AV geel,, , With PSSs in Itaipu and S. Segredo
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Imag

Imag

POLE PLACEMENT — 2 MODES AND 2 PSSS
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POLE PLACEMENT — 2 MODES AND 2 PSSS

» The pole location must be carefully chosen

2 Some specified pole locations may require high
PSS gains and cause exciter mode instability

> Comments on the installation of a third PSS

> Facilitates the pole placement = more convenient
pole-zero map

2> Number of PSSs differs from the number of poles to

be placed = pseudo-inverse of a non-square matrix
must be computed

> Algorithm must be modified
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PSEUDO-INVERSE ALGORITHM

Problems without unique solution = pseudo-inverse
algorithm

Re[R] oy AK g = Re[AA] g m = number of modes

n = number of PSSs

» If m < n = the algorithm will produce gain values that
ensure a minimum norm for the gain vector
min|AK|

» If m_ > n = the algorithm will produce gain values that
ensure a minimum norm for the error vector (solution

of the least square problem)

min||Re[RJAK — Re[AA]|
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POLE PLACEMENT — 2 MODES AND 3 PSSS

Three PSSs installed in:
2 [taipu, Salto Segredo and Foz do Areia

» Pseudo-inverse algorithm will provide the solution with
minimum norm for the gain vector 4K

» The gains of the PSSs are computed for a desired shift
In the real part of the eigenvalues

» At every iteration, the pseudo-inverse algorithm
updates and solves the following matrix equation:

AK; ] | Re R( AVpssy /1] R[ AVpss) ﬁj R( AVpss3 lj
AVREF1 AVREF2 AVREF3

Ay
AKZ = Re
Re{R[ AVpss1 /IJ R( AVpss? /Ij R( AVpsss ﬂ Ady

T+

| AK3 |

AVRerR1 AVReE2 AVREE3
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POLE-ZERO MAP OF [A®/AV gl 3

» Map of poles and zeros for the matrix transfer function

[A®/AV (], 5 With PSSs in Itaipu, S. Segredo and Foz do
Arela
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POLE PLACEMENT — 2 MODES AND 3 PSSS

K taipu =8.1
Ks.segreso = 11.9
Kroz do areia = 12.0
G, = 15.9%

¢, = 15.9%
Kltaipu =104
Ks.segredo = 16.3
Keoz do areia = 16.3
L, = 22.0%

03 G, = 21.4%
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CONCLUSIONS

» Proposed pole placement algorithm:

> Based on transfer function residues and Newton
method

2 Uses generalized inverse matrices to address cases
without unique solution

» Inspection of the pole-zero map is very useful
» Pole placement method

> Selected pole location can impose constraints that
may be unnecessarily severe

2 Results may be not feasible = pole placement may
yield undesirably high values for the PSS gains
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FINAL REMARKS

»Important developments and increased use of

modal analysis

»Large-scale, control-oriented eigenanalysis

»Much room for further improvements
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