DECOMPOSITION TECHNIQUE FOR EFFICIENT COMPUTATION OF
SMALL-SIGNAL STABILITY PROBLEMS IN LARGE POWER SYSTEMS

Nelscn Martins and Leonarde T.G. Lima

CEPEL-Centro de Pesquisas de Energia Elétrica

CP 2754 - Rio de Janeiro,

Abstract - This paper describes a decomposition technique
to be used in connection with algorithms for the solution
of small-signal stability problems of large power systems
{1] . This technique decomposes the complete system into
one internal system and several interconnected external
systems and allows efficient use of parallel computation.
This technique is also valuable in frequency response
studies, on a uniprocessor computer, when the applied
disturbance and monitored outputs are all located within
the internal system.

I. INTRODUCTION

Reference 1 presents efficient algorithms for the
solution of small-signal stability problems of large power
systems. These problems include the calculation of
dominant eigenvalues, frequency response plots of transfer
functions between any two variables in the system and step
response solutions by numerical integration.

This paper describes & technique to be used in
conngction with these algorithms which decomposes the
complete electric system int¢o one internal system and
several external systems. The formulation developed is
genersl and each external system can be connected to any
other external system and to the internal system through
various boundary buses. There is no mneed for system
stability considerations to define the external and
internal systems, since the decomposition technique is
just used as a mathematical tool for efficient sclution.

The decomposition technique finds application in three
instances:

1 - To solve large problems on uniprocessor computers with
reduced core capacity. The decomposition techmique is then
used to break apart the complete power system intc smaller
subsystems which are individually solved.

2 - To save computation time on a uniprocessor computer
when wusing the frequency response algorithm described in
[1] . In this case it is assumed that the applied
disturbance and monitored outputs are all located within
the internal system [2] .

3 - To speed up the solution of power system small-sigmnal
stability problems through use of parallel cemputation

[31.

The power of the algorithms proposed in {1] rests in
the fact that the electric network equations are expressed
in their unreduced form. This fact alsc accounts for the
efficiency of the decomposition technique, which is
similar and equally as flexible as those proposed in {4,5]
for the sclution of steady-state power system problems.
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ITI. MATHEMATICAL FORMULATION

Reference 1 presents efficient algorithms for the
solution of small-signal stability problems of large power
systems (see Appendix). All these slgorithms involve the
solution of an equation of the general form:

Jc Ip

where JA corresponds to the matrix block J5 of Figure 1
with some extra terms added to its diagonal. The
characteristics of the Jacobian matrix shown in Figure 1
are described in the Appendix.
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Figure 1

Consider an interconnected system which is to be
decomposed into two subsystems. By reordering the
variables of equation {1} one obtains:



Ag Bg g by
A1 B1 X5 By
Cg YEE | YER yp - (2)
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where subscripts "E", "I" and "B" refer to wvariablea or
matrix blocks associated with the extermal system,internal
system and boundary buses, respectively. All variables in
(2) are incremental values, but the symbol A is omitted
for simplicity.

The correspondence between blocks of (1) amd (2) is as
follows: '

Ag
Ja = Jg =
Ay
Cg Ygr | YEB
Jo = Jp = YBe | YpB | ¥BI
C1 Yip | Y11

Elimination of the external system variables (Xg , Vg)
and independent vector bE is then performed, vielding:
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Subvectors X1 , Vg and , ¥1 can be solved by using
either equation (2} or (3). The solution vector X, formed
by subvectors Xg, X1, Vg, ¥8 and ¥y, cau also be obtained
by decomposing (2) into two sets of equatious:
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ext
YBE | YBE ¥s
Ay By X1 by
int
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int ext (5)
where: Ypg = Ygg + Ygp
Elimination of Xg and Vg in (4a) yields:
ext w *
(Ypg » ¥p = by (6)

exXt ext
where: (Ypp ) = Ygg

Ypg (g | Ypg

By adding (6) to the corresponding blocks in (4b) one
obtains equation (3). The variables of the internal system
and boundary buses are calculated from equation (3}, From
knowledge, of ¥p, the vector of boundary bus voltages, the
external system variables are solved by using a modified
form of equation {(4a}:

Ap | Bg Xp bg
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The matrices of equations (2}, (3}, (4) and (7} are
highly sparse (see Appendix) and the decomposition
technique is computationally efficient with the use of
sparsity-oriented routines for Gaussian Elimination.

Note that the equations shown in this Section can
easily be generalized for the case of multiple external
systems, but this is here omitted for brevity. A similar

fermulation, devoted to steady-state power system
analysis, can be found in [5 ].
It should be emphasized that the decomposition

technique does not introduce any potential numerical
stability problems into the basic algorithms reported in
[1). The use of equations (2} or (4a} and (4b) lead to the
same npumerical values for the solution vector. The
difference in round-off errors between the two cases is
insignificant to any engineering application. Thefore
there is no degradation in the convergence rate of
the algorithms presented in [1) when using the proposed
decomposition technique.

I1I.CONSIDERATIONS ON THE DECOMPOSITION PRINCIPLE

Consider the electric system shown in Figure 2a which
comprises am intermal system and three interconnected
external systems. Buses Bl, B2 and B3 definme the internal
system boundary while buses B12, B13 and BZ3 represent the
boundaries between external systemsa. In order to apply the
decomposition methodology described in Section II it is
necessary to define an Extended Internal System comprising
the original internal system plus all the boundary buses
in the complete system. Connectivity of the Extended
Interngl System comes through the elements or *lipes"
generated by Gaussian Elimination of all external system
variables, as shown in Figure 2b. The equivalent shunts
and injected "currents" at the boundary buses, generated



by the aforementioned elimination, are omitted in the

figure for simplicity.

Sparsity Aspecte

The Jacobian matrix of each external aystem is formed
with its network equations optimally ordered per Tinney-2
scheme [ 6 ]. Ir the Jacobian matrix formation of the
Extended Internal System, the Tinney-2 ordering scheme is
carried cut considering the external system equivalents
plus the Extended Internal System (see Figure 2b).
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It may be convenient to retain selected buses in order to
preserve the sparsity of the external system equivalents
[ 6] The decomposition techmique can consider this by
simply including the retained external buses in the
boundary bus partition Vp of the Extended Internal System,

It is interesting to note that the Extended Internal
System can be comprised of only a set of non-connected
buses and does not need to have components with dynamic
representation. Let us again consider the system of Figure
2 and define the depicted internal system as the fourth
external system and the set of six boundary buses as the
new Extended Internal System. The solution of the Extended
Internal System variables {stage 4 of the computational
scheme presented inm Figure 3) inveolves the factorization
of matrix YEBg, which is here associated with a system of
six buses and 11 equivalent lines (see Secticn II).

Suggested Implementation on a Multiprocessor Network

The decomposition technique presented in this paper

allows efficient implementation on a parallel
multiprocesser network, im which every CPU  would
specifically solve a designated subsystem. Thus it is

convenient to break apart the interconnected system into a
number of subsystems of approximately the same size.
There is nc need for system stability considerations to
define these subsystems, since the decomposition technique
is just used as a mathematical tocl for efficient parallel
solution.

Figure 3 shows in a schematic way the implementation
of the AESOPS algorithm [1,7,8) on a parallel
multiprocessor network. The blocks identified as ES; and

1S represent different processors solving the "i-th"
External System and the Extended 1Internal System
respectively. It is seen that this parallel computatien

a bottleneck associated with the solution for
the Extended Internal BSystem wvariables. Thus it is
important to select an adequate set of boundary buses so
as to preserve sparsity in the Extended Internal System
matrix, and also to keep it as small as possible.

The system decomposition prineiple can be efficiently
implemented on a simple munltiprocesscr structura:
independent processors conmected on a single bus. There
will not exist problems of high comunicatien overhead as
most of the computational work is independently done by
the various processors in parallel. As seen in Figure 3,
there is no data transmission between processors which are
in parallel.

scheme thas

Speed Hp Obtained With The Parallel Compputation Scheme

Some figures are now given on the speed up obtained
by using the decomposition technique on a parallel
computation scheme. The major part of the computational
work in the implementation shown in Figure 3 is devoted to
the execution of steps 3, 4 and 5. The computatiomal
effort for sparsity-oriented factorization and solution
will be considered to vary linmearly with matrix size in
this analysis [6] . Accordingly, on ideal conditions
the implementation shown in Figure 3  approximately
solves each one of steps 3 and 4 in a time t/ns.. Step 5
takes about t/{4ns) since it only invelves forward and
back substituticns.All subsystems are assumed to be of the
same size and "ns" is the number of subsystems in which
the interconnected system was decomposed. The constant "t"
is the time needed for sequential sclution of the complete
interconnected system on a single processor. For the case
of 50 subsystems of equal size and the same number of
independent processers, the maximum speed up obtained from
the use of the described parallel computation scheme would
be of the order of 20 times.

The task of decomposing the interconnected system
into a few subsystems can easily be done according to
geographical wunits such as the individual wutilities,
"areas" and "gubareas", However, the automatic
decomposition into a large number of subsystems for
maximom efficiency of the described parallel computation
scheme would require very clever bus ordering algorithms
of the block-bordered diagonal form (BBDF) [4,5].

IV, RESULTS

Frequency Response Calculations

The decomposition technique applied to the frequency
response algorithm [1} , on a uniprocessor computer, can
significantly reduce computational work. It is recommended
for use in engineering studies in which the applied
disturbance and monitored outputs are all located within
the internal system. Subvector by of (2) does not exist in
this application and, accordingly, Q; of (3) is a null
vector. The external system frequency response
contributions are previously calculated and stored on disk
files for every discrete value of applied frequency within
the range of interest. A typical study case could have a
few generating plants as the internal system and the whole
interconnected system as the external system. In this



application, the operating point or the topology of the
internal system can even be changed as Iomg as the
conditions at the boundary buses remain the same.

Results are shown for the well-known New England test
system [7) , whose Internal System is here defined as
comprising the generators at buses 30 and 38 (refer to the
one-line diagram shown in {7]). Only these twa buses
belong to the Internal System which is therefore
non-connected. The External System comprises the other
eight generators and the complete electric network apart
from buses 30 and 38. The Bode plots for the transfer
function V¢{s}/ Vref(s) for the two generators of the
Internal System are shown in Figure &4 for four cases,
which were obtained by considering or not the presesnce of
power system stabilizers. These four plots were obtained
using a unique data file, containing the previously
calculated frequency response contributions of the
External System. The computation time required to produce
these four plots was reduced by half through use of the
decomposition technique.
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Figure 4 - Bode Plots of Vi{s)}/ Veef(s)

{a) For Generator at Bus n® 30
(b} For Generator at Bus n? 38

Eigeovalue Calculations in a Parallel Mode

A cowputer program was developed on a uniprocessor
computer to simulate a parallel multiprocessor network in
the solution of the AESOPS and Implicit Inverse Iteration
algorithms. The structure of the original code [1] remained
basically the same but some additional subroutines were
needed to allow  application of the decomposition
technique. The simulation program solves one subsystem at
a time and store partial sclutions on disk files, which
are retrieved when needed. Parallel computer CPU time
is ,considered as being the time needed for the
uniprocessor solution of the largest subsystem within each
parallel path (see Figure 3.

Simulation tests were  carried out on the
South-Southeast Brazilian System represented by 356 buses,
628 lines and 49 generators. The interconnected system was
decomposed into five subsystems, whose dimensions are
given in Table 1, according to natural geografic groupings
of elements.

SUYBSYSTEMS

ES1- ES2 ES3 ES4 IS
Buses 105 43 40 30 138
Generators 14 6 8 1 20
Boundary Buses 4 4 4 3 15

Table 1: Subsystem Dimensions in Test System. :
ESj = i-th External System; IS = Internal System

The simulation program is still at prototype level:
the code needs to be further optimized and it only allows
a maximum of four boundary buses per external system. As a
consequence, only a low number of subsystems of very
different sizes could be generated {see Table 1), This
precluded a correct evaluation of the speed up which can
be obtained by the parallel computation scheme.

The eigenvalue pair associated with an inter-area
mode of oscillation, ir which the whole Southeast System
swings against the South System, is A = =0.113 + j 3.403.
The small-signal stability progrem of [1] was used to find
this eigenvalue by the Implicit Inverse Iteration {ITI)
algorithm starting from an estimate *= 0 + j3. The IIT
algorithm converged to a tolerance of 10-6  in 11
iterations in 31 seconds of CPU on a VAX-11/780 computer.
The simulation pregram was run for four cases in which the
system was divided into 2,3,4 or 5 subsystems, In all
cases the eigenvalue results were the same (up to 7
significant figures) as that obtained with the original
non-partitioned system. The simulation program required
100 seconds of CPU to run the case with 5 subsystems, due
to the read/write disk operations during the convergence
process and the less efficient code.

One natural advantage of the parallel computation
simulation program is that it can solve problems "as"
times larger than the memory capacity of the uniprocessor
computer ("ns" is the number of subsystems in which the
system is divided).

V. CONCLUSIONS :

The decomposition technique is very effective 1in
saving computation on a uniprocessor computer when
conducting frequency tresponse studies on multimachine
systems,

The suggested decompositon technique applied to the
algorithms of [1] makes possible the parallel computation
of small-signal stability problems. In general, the larger
the number of subsystems in which the system is torn, the
faster the desired calculation.

The parallel computation of eigenvalues, via AES0PS
and Implicit Inverse Iteration algorithms [1] , was
simelated on a wuniprocessor computer. Results were
obtained for a medium-size interconnected system which was
divided into five subsystems according to mnatural
geographical units, such as "areas" and "subareas".
Further partition of the system was not attempted due to
present limitations of the prototype version of the
program.This precluded an evaluation of the speed up which
can be obtained by parallel computation.

It was observed that there is mo degradation inm the
results or convergence rate of the algorithms presented in
[1] when using the decomposition technique.

Efficient algorithms are ueeded to  automatically
decompose a given power system into many subsystems and in
the most cenvenient form for parallel computation.

Diakoptics [9]) could also have been used in connection
with the algorithms of [ 1] ,but the decomposition technique
here described leads to simpler computer implementation.
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APPENDIX
AbLENUSA

EFFICIENT ALGORITHMS FOR THE SOLUTION OF SMALL-SIGNAL

STABILITY PROBLEMS

The package of computer programs developed in the work
reported in [1] contains efficient algorithms for the
calculatiod of:

specified point in a
eigenvector (implicit

1 - Exact eigeovalue closest to a
complex plane, and associated
inverse iteration algorithm).

2 ~ Exact eigenvalues associated with the dominant modes
of oscillation of the system (AESOPS algorithm) [ 7, 8] .

3 - frequency response plots of transfer functions between
any two specified variables in the system.

4 - Step response results obtained wvia  implicit
trapezoidal integration formula. This algorithm was
not described in [1] for being of straightforward
implementation.

All the aforementioned functioms of the program

package mwake use of the Jacobian matrix of the
differencial-algebraic set of equations for the electric
system , calculated for a system operating point. All the
pertinent formulation has been described in [1] . The
Jacobian matrix, whose structure is depicted in Figure 1,
caters for various models of synchronous generators and
associated controllers, induction motors, non~linear loads
of different characteristics and static VAR compensators.
Special routines also allow the wuser to specify power
system controllers without restriction on their order or
topology.

The Jacobian matrix is formed by first entering the
blocks of equations for every system genmerator. After this
the induction motor bleocks are built and are followed by
the static VAR compensator blocks. The mnetwork equations
come last in the Jacobian matrix formation. Submatrix Jp,
shown in Figure 1, is practically equal teo the nodal
admittance matrix of the network, expanded into its real
and imaginary parts. The ouly difference lies in the fact
that the (2x2) diagonal bloks of Jp corresponding to the
nodes which contain linear, non-linear or induction motor
loads, have extra partial derivative terms added to them.

The power system Jacobian matrix is extremely sparse
and of wvery high order, and the full use of sparsity
techniques becomes imperative. As seen from Figure 1,
there will be opractically no £ill-in during the LD
factorization of the submatrix Js and therefore the
ordering of its equations is not critical [1} The metwork
equations of submatrix Jp are optimally ordered per
Tinney-2 scheme which selects the node for elimination at
each stage that introduces the fewest mnon-zero elements -

e} .



