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Abstract — The main features of a comprehensive package for the
study of small-signal stability problems of very large power
systems are presented. This ‘package employs state—of—the-art
algorithms for the calculation of dominant ergenvalues, transfer
function zeros and residues, participation factors, mode—shapes,
time and frequency response plots, synchronizing and damping
torques and external system equivalents in the frequency domain.
This paper describes the algorithms used in this package, which is
denominated PACDYN, and reports results obtained in the study
of several test systems.
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1. INTRODUCTION

In the last three decades many instances of unstable
oscillations, involving inter—area modes of large power systems,
have been ohserved in various parts of the world. A 1eliable
computer simulation of these modes, regarding both damping and
frequency, requires an extensive and detailed representation of the
large interconnected system [1].

The development of powerful eigenvalue programs for
small-signal stability analysis has been, for some time,
recommended by CIGRE {2]. Brazilian utilities have been using
multimachine eigenvalue programs for the last decade. Many
technical reports from individual utilities and multi-utility
coordinating councils [3,4,5,6] have been produced based on
eigenvalue results. These results were mainly obtained through use
of AUTOVAL, a conventional state matrix Lased multimachine
eigenvalue program, developed by CEFPEL [7].

AUTOVAL did not completely fulfill the requirements of
the Brazilian utilities for a small-signal stability package. In
response to their needs, CEPEL has heen working for a decade in
the development of a state—of-the—art package denominated
PACDYN f8,9,10,11,12,13]. A beta version is already available
and undergoing tests conducted by FURNAS Electricity Company
. personnel [14].

Section 2 of this paper contains a brief review of ihe
algorithms employed in the linear analysis of the small-signal
electromechanical stability of large power systems.

The major characteristics of PACDYN are described in

Section 3. Section 4 shows an application of PACDYN in the study
of a large AC/DC practical power system. Section 5 shows results
obtained in studies of different nature for three other test systems.

Despite the major algorithm and theoretical developments
in the field, fully reflected in the computational methods utilized
by 855P [l] and PACDYN packages, there is a pressing need for
further research. Section 6 of this paper identifies some of the most
fertile grounds for future research and development in this area.

. OVERVIEW OF METHODS FOR SMALL SIGNAL
STABILITY ANALYSIS-

The power system electromechanical stahility problem can
be represented by a set of differential equations together with a set
of alpebraic equations, to be solved simultaneously with each
other:

i=1£x1) (1)
0=g(x,1) ‘
where x is the state vector and 1 is a vector of algebraic variables.

Small-signal stability analysis invcives the linearization of
(1) around a system operating point (X, Io}:

= |—-- —3 — (2)

The power system state matrix can be obiained by
eliminating the vector of algebraic variables Ar in equation (2):

Ax = (J1—J23;133)AE = A Ax {3)

The symbol A is used to represent the system state matrix,

whose eigenvalues provide information on the singular point
stability of the non-linear system.

The symbol A signifies an incremental change from a steady-
state value and will often be omitted in the remaining part of this

paper.



II.1 Traditional Algorithms

For many years, programs have been developed to form
explicitly the state space equations:

x=Ax +
¥y = gtx

+hu (4)

where u and yare a given pair of input and output variables.

Full eigensolution of non—sparse matrix A is normally
restricted to systems of moderate size (» 500 states) due to the
large memory and computation time requirements.

The transfer function F(% relating the input v and output y
variables is obtained from the Laplace transformation of equation

(4):
Rs) = et(sI-A)"b (5)
The frequency response analysis of dynamic syﬂtems can be
performed by replacing the Laplace variable "s" by "ju" in

equation (5) and numerically calculating F(jw) for discrete values
of "jw" within the frequency range of interest. The use of equation
(5) becomes prohibitive for large order systems due to excessive
computational time and memory requirements,

Transfer function residue caleulation [10,15}, eigenvalue
sensitivity coefficients [16], time response to step disturbance and
many other needed functions are all prohibitively expensive for
large scale systems using this traditional formulation.

.2 Algorithms for Large Scale Systems
The fundamental concept that allows the methods of the
previous section {o be applied to larfe scale systems is the use of

the augmented system eguations [8,11], which is now described.

The basic equation relating state matrix, eigenvalues and
E]genVE'Ct.OI'i is: -

Ag=iu (6)
where A is a system eigenvalue and y its associated eigenvector.

This basic e
matrix shown in {

uation when expressed in terms of the Jacobian
becomes a generalized elgenvalue problem:

Iy iH
) [ l (7)
J3 Iy

where (u*, )

==l

o

b is the qugmented r1ght eigenvector of A and is
denoted by u®. Similarly, the gugmented left eigenvector can be
defined as (v*, £§)* and is denoted by v

The state space equations of {4} can in a similar way be
expressed as:

x 4y Iz x
——f = —i+ [k |
4] Ja Jy I
(8)
X
y= et it — = ¢ xh
L

where
b2 = sugmented input vector
c2 = augmenied output vector
= augmented state vector

The large advantage of equations (7) and (8) is that the
system Jacobian matrix is hl% y sparse and allows the use of
efficient sparsity—based algorithms. A good part of the algorithms
for the solution of small-signal stability problems which make use
of the augmented system equations concept are briefly described in
this section.

R

Fignre 1. Jacobian Matrix for New England System

Figure 2.  Triangular Factors Topology Map for New England

System Jacobian Matrix



Figute 1 shows the Jacobiar matrix topology for the
well-known New England stability test system [17] where the
system variables are ordered in a different way to that shown in
equation {2). The reader should refer to [8] for more details on this
different assembling of the power system eguations.

The Jacobian matrix shown in Figure 1 is real, asymmetric
and very sparse. Figure 2 pictures the triangular factors topology
map for the Jacobian matrix of this system, which are also highly
sparse.

Inverse Iteration

The major computational task in the basic inverse iteration
algorithm is related to solving for wy, in the equation below:

(A— L) Wit = 2 (9)

where the subscript kis the iteration number, ¢is a complex ghift
and gz is a complex vector.

Matrix A is not sparse for the small-signal electro-
mechanical stability application. Therefore factorizing (A — ¢I)
and solving for wy,; demands a large computational effort if the
problem dimension is high. .

Computational efficiency is achieved by using sparsity
techniques to solve the equivalent matrix problem:

Ji—-ql r I3 ¥k Zy
= = (10)

I3 ‘ Jy Tk 0

where 1 4 is the vector of algebraic variables and 0is a null vector.

Both right and left augmented eigenvectors can be calculated
from the same LU factors of the asymmetric Jacobian matrix.

Krylov Subspace Methods

Consider W =[w, wy... Wx | t0 be a basis for an invariant
subspace of dimension . Since this is an invariant subspace, the
premultiplication A W yields a matrix whose columns can be
written as linear combinations of the columns of W and can be
expressed as:

w C

nXxXmmxm

A W =

BXII T X |

(11)

The right eigenvalue/eigenvector equation for the coefficient
matrix Cis given by:

Cy=2Xy (12)

Premultiplying both sides of equation (12) by the matrix W

and using the relation described in equation (11) one obtains

AWy=) Wy (13)

Equation (13) shows that ) is an eigenvalue of both C and

A. In this way the large scale eigenvalue problem (A) can be

reduced to an equivalent lower order problem (C) if an invariant
subspace W is determined.

This basic concept is utilized in all Krylov subspace methods

such as Simultaneous Iteration, Modified Arnoldi and asymmetric
Lanezos [18,19).

Frequency Response Calculations

Equation (11) shows an intermediate step in the derivation
of equation (5):

(sT-A)X(s) = b U(s) (14)

note that X(s) and Y(s) are the Laplace transforms of the system
state vector and the applied input respectively.

Replacing s by jw and noting that (14} is similar to equation
(9), the frequency response method can be written as

ij—J] —Jg )_{(‘]w) h )
= |—] Uljw)

R{jw) 0

(15)

Normally, generator terminal voltage magnitude and active

- power are among the output variables of interest. The linearized

expressions for these variables in the frequency domain ate similar
to those in the time domain, and are given by:

AViljw) = 1 A Vi(ju) + Y80 A Vig(ju) (16)
50 Via
Piljw) = Vio AL{ju) + Vo ALa(jw) + Lo A Vi(jw) +
+ Ino A Vel jw) (17)

where the subscript ¢ denotes a steady-state value for the variable,
while rand m stand for real and imaginary components.

The use of expressions of the type shown in (18) and (17)
obviates the need to calcuiate the system output matrix C, whick
is non-sparse, with large savings in computation.

System Equivalents in the Frequency Domain

This methodology is very effective in saving computation
time when using the frequency response algorithin of equation g15)
[9,20]. In this applicativn it is necessary that the applied
disturbance and monitored outpuis be all located within the study
system. This methodology will be briefly explained through use of
Figure 3, where the two generators and associated controllers
comprise the study system while the large AC/DC system will be
referred to as the external system.

Stud;/ System
P z .1l2 (s} \

G 1 1 1
(D ©,
4 11 (S) z 29 (5)

Large AC/DC System

Figure 3. Large System Equivalent in the Laplace Domain

The problem posed is that of studying the dynamic
interactions and controller design of the two distinct generators in
Figure 3. The operational impedances shown in Figure 3 are
described by rational polynomials in s of order equal to the
number of state variables in the external system. These high order
polynomials are never analytically obtained but rather
numerically evaluated for every discrete value of frequency in the
range of interest.

A frequency response plot for controller design purposes
normally requires from two to three hundred discrete frequency
evaluations. Every discrete frequency evaluation involves the



factorization and solution of a complex matrix problem, in the
form shown in {15), with several thousand equations. The

frequency response algorithm is one of the most CPU intensive -

methods in large scale power system analysis.

The Iarge external system frequency response contributions
can be previously calculated and stored on disk files for every
discrete value of applied frequency within the range of interest.
The interactions within the study system, considering the
dynamics of the whole system, can then be calculated from a
slightly modified set of equations of the study system that includes
the previously calculated external system contributions.

Transfer Function Residues

The transfer function F(s) shown in (5) can be expressed as
[10}:

- v R
= ¢t — 1 =
F(s) = ¢ (1-A)'b = § —Fi

(18)
where n is the dimension of A and R; js the residue of F(s)
associated with the eigenvalue A;. The residue R can be expressed

as the product of 2 mode observability factor (&i) by a mode

controllability factor (b?. These two factors can be easily
calculated from the knowledge of both right and left augmented
eigenvectors and the augmented input and output vectors as
described in {10]. Left and right augmented eigenvectors are
obtained through use of inverse iteration method shown in (10).

Once the desired right and left eigenvectors are calculated,
the residues for thousands of different transfer functions can be

efficiently obtained by considering the corresponding augmented

input/output vectors.

Figenvalue Sensitivity Coefficients

The eigenvalue sensitivity coefficients can be calculated,
when using matrix A, through the formula

dA
o _ Y Fa s (19)
o ou

where n and v are the right and left eigenvectors associated with A
and ais a system parameter.

A general formula for eigenvalue sensitivity coefficients
applied to the generalized eigenvalue problem was described in
[16]. For the augmented system equations shown in (7) some
simplification applies, yielding:

y 83
ar _ Y8 Tjg Le (20)
da LA |

where J is the Jacobian matrix shown in (7).

Useful information can be obtained through eigenvalue
sengitivity analysis when o« is chosen to be a bus voltage
magnitude, a network impedance, a dynamic component or
controller parameter, etc.

Time Respomse of the Linearized System

Consider the linearized system state space equations shown
in equation (4). A step disturbance is to be applied to the input
variable u and the dynamic response of the system monitored
through the variables in x and y. Adopting the implicit trapezoidal
algorithm [21] for the numerical integration of the system
equations one obtains:

(%I—A)Eid=(%1+f\)l&i+2b (21)

where f is the time step of integration, I the identity matrix and x4
and x;.; are values at time steps tj and #,; = ¢ + A By referring
to equations {4) and (8) it can be seen that equation (21) is
equivalent to:

=l Xi+l

it

%I+J1 I
- — {420
Jy

% -1,

-Jy ~J4 Ii Jg

im]
o

C @)
The algerithm in (22) is efficient when implemented with
sparsity coding. Vector ¢t of equation (4) is not needed since the

cutput variable ¢ can be obtained from simple expressions in terms
of the variables contained in the solution vectors xy.; and i,

Transfer Fanction Zeros

The zeros of the transfer function of equation EB) can be

obtained by eolving the generalized eigenvaliue problem {12]:
x x
—1 = A —_ (23)
U %

A standard library Q7 routine [22] can be used to obtain the
complete set of transfer function zeros, as long as the system is of
moderate size.

Krylov subspace methods can be used to efficiently calculate
several zeros at a time of large power system dynamic models.
These methods must be applied to the augmented generalized
eigenvalue problem, which is sparse:

Jgl | Jy | by x I o ¢ b3
Iy oo b | i=x]0o o [o]|]|z]|@y
Cxt Cct 0 U Qt' Qt 0 7
Improved AESOPS

The AESOPS algorithm [17] is a heuristically based one-at-
a-time eigenvalue method designed to compute the electromechan-
ical modes of oscillation for large power systems. The AESOPS
algorithm is derived from the linearized equation of motion of a
chosen generator, to which a complex frequency disturbance in the
mechanical torque is applied. At every iteration, a corrected value
for this complex frequency disturbance is applied until the system
becomes resonant. This iterative process is almost always
convergent and the comverged complex frequency value corre-
sponds to an electromechanical eigenvalue which is dominant at
the disturbed generator.

The power system eigenvalues were shown in [1] to be equal
10 the zeros of a special transfer function. This fact were not used
to advantage in [1] due to the lack of an exact analytical
expression for auch transfer function and of an adequate transfer
function zero finding method for large scale systems. These two
obstacles were obviated in the work reported in {12], leading to the
improved AESOPS algorithm here described..

Consider the block diagram of Figure 4 which describes the
torque-angle loop dynamics of the disturbed jth generator in a
large power system. The inertia constant of the jth generator is
denoted by Hj.



Considering Figure 4 and choosing the mechanical torque

and totor angle as output and input variables respectively, one

gets:
A Tel(s) N]_(s)
D](S)
ATp(s) — =L -+ Ad(s
s — e (9

Figure 4. Torque-Angle Loop of Disturbed jth Generator

ATys) = [ 21, N9 ) a4 (25)
0 Dl(-?) .

It can readily be seen that the zeros of the transfer function
ATy(s)/Ab8(s) of (25} are equal to the poles of the closed loop
system of Figure 4. The desired power system cigenvalues are
tf{erefore given by the zeros of the transfer function A Ty(s)/ Aé(s).

The zeros of (25) can be obtained, as shown in [12], by
solving the generalized eigenvalue problem:

!
A’ ks X 1 0
A (26)
¢ | dA) | |6 e fol|s

where the term d{}) is given by:

42) = o5+ 2L 32 (27)

I

=

and cs, by and A’ are defined in [12].

The generalized eigenvalue problem described by equation
(10) cannot be adequately solved by the inverse iteration
algorithm since the matrix on the left part of the equation is a
functional of the unknown variable A. A more convenient way to
solve this problem would be by using the Newton-Raphson method
applied to the augmented aystem equations [12].

Mixed Real/Complex Computation

The use of sparse matrix and vector techniques to efficiently
solve large simultaneous linear equations is the basis for almost all
applications in power systems.

The efficiency of sparsily techniques is dependent on the
skillful implementation of the algorithms and the exploitation of
the coefficient matrix characteristics like symmetry, blocked
structure, etc. Sparse matrix techniques need to be adapted to
take full advantage of special characteristics of the matrix
problems dealt with in different applications [23].

Power system analysis deals mainly with structurally
symmetric matrices, whose elements are either all real or all
complex, and very good algerithms have been developed to handle
these cases. The existing algorithrns are however not fully suited
to the different class of matrix problems which arises in the power
system small signal stability area.

The power system stability problem is formulated through
the sugmented system equations shown in (4) for the efficient small

signal analysis of large scale power systems. The eigenanalysis and
frequency dotnain methods previously described deal with a
mairix problem of mixed nature, where a real coefficient matrix
(the Jacobian matrix) has complex elements added to just some of
its diagonal positions. This fact can be exploited to advantage,
resulting in the use of both real and complex arithmetic during the
triangnlar decomposition and repeat solution. A tie—breaker
criterion for the minimum—degree ordering [23] is used to minimize
the complex arithmetic. A partial refactorization scheme [23] is
also readily obtained from the knowledge of the complex pattern of
the factors.

These mixed real/complex techniques can be- applied to
matrix problems in other fields of engineering.

Efficient State Mairix Formation

The state matrix A of equation (4) can be directly obtained
by performing sparse Gaussian elimination to the Jacobian matrix
of (2) [21]. This method is however not efficient for large scale
gystemns due to the inevitable excessive fill-in, since A is non-
sparse in this application.

An efficient method for obtaining A directly from the
augmented system equations is now described. The large and non-
sparse matrix A is here formed by calculating one of its columns at
a time. Let ¢; be a singleton [23], i.e., a vector with a real unity
value at the +th position and zeros elsewhere. The product A g
yields the i-th column of the state matrix A. This elementary
matrix/vector product constitutes the basis of this algorithm that
fully exploits the sparsity of the Jacobian matrix.

Two steps need be performed to obtain a;, the +th column
of the state matrix:

1) Solve for vector 13

I I 0 &i €i (
= 28)
Iy ' I | | m 0
2) Perform the product below to obtain a4
éi. Iy J2 €i
| = (29)
0 Ja Jy Ij

Note that only one real matrix factorization is needed to
obtain all columns of the state mairix A.

A modern package for the smali-signal analysis of power
systems should have a pgood part of the above described
algorithms. A production grade software must have ease of data
input, flexible user defined controller models capable of sensing
any combination of local and remote system variables and good
program output. Program efficiency may be slightly sacrificed in
favor of the above facilities.

IIL. THE PACDYN SOFTWARE PACKAGE

The PACDYN beta version is coded in standard
FORTRAN-77 and has been implemented in VAX 11/780,
DECstation and IBM—PC compatible (386 or 486) equipment. It
presently requires 4 Mb of memory using double precision. This
dimension allows the representation of a system with 1000 buses
and 1500 lines with complete dynamic data for 200 generators, 10
HVDC links, 3¢ static VAR compensators and 20 induction
motors. Full eigensolution can be obtained for matrices having up
to 500 states, using a standard library QR routine [22]. Left and
right eigenvectors are obtained through use of inverse iteration
applied to the gugmented system equations.



The operating point condition can also be read from a load
flow program history file. All major dynamic components
(synchronous and induction machines, automatic excitation
systems, speed governors, stabilizing signals, static VAR
compensators, HVDC links, advanced series capacitors and static
phasa-shiftersj can be modeled in various degrees of detail.

PACDYN has user—defined controller subroutines which
allow complete freedom in defining the order and topology of the
various controllers in the system. Any combination of local and
remote variables may be used as input to any given controller (up
to 20 different inputs per controller).

All the algorithms are directly implemented using the very
gparge power system Jacobian matrix of equation (2), which is the
kernel of the package. This structured implementation. has some
major advantages: 1) any new development or addition to the
Jacobian matrix is auntomatically wvalid to all implemented
algorithms; 2) a sin%le set of specially designed sparsity routines
[L3] yield efficient solutions for all algorithms alike.

A number of new features and functions are under current
development:

¢ multiterminal HVDC systems;

» advanced series compensator and static phase shifter
models;

s jnclusion of network RILC transients and adequate
component models for SSR studies [24];

» voltage stability analysis capability (please refer o paper
section Concluding Remarksg;

s cipenvalue sensitivity with respect to system changes;

graphical interface;

paraliel computer implementation of Krylov subspace

methods.

Unique Features

The PACDYN packa%e has some unique features that
distinguish it from other small-signal stability analysis packages:

1) The time response algorithm, that allows a wide variety of
input disturbances and the efficient monitoring of any specified
get of system variables. This is a highty useful complementary
function for the analysis and control of small-signal stability of
large dynamic systems. It allows a direct validation with the
traditional transient stability simulation results.

2) The use of system equivalents in the frequency domain allows
large savings in controller design through frequency response
techniques considering the whole power system dynamics.

3) TUser defined controller routines that allow the representation
of system controllers of any kind, order and topology. A
maximum of 20 different input variables per controller may be
used and selected from a wide variety of system variables
either focal or remote. These routines are used for the modeling
of controllers such as AVR, speed governors, PSS, SVC,
HVDC links and FACTS devices.

4) All functions are available in a single computer program.
Different program functions can be run in a highly interactive
mode using the same system Jacobian matrix. As a single data
fite and program is used, the possibility of user generated input
errors is largely minimized. Code maintenance also highly
benefits from this program characteristic.

5) Fast determination of ranking lists, based on transfer funetion
regidues, for stabilizing control allocation to damp a specified
mode of oscillation.

6) Calculation of zeros of scalar and matrix transfer functions;

7) Mixed real/complex sparse factorization and sotution routines
for computational speed—up.

IV. BRAZILIAN SOUTH-SOUTHEAST HVDC
INTERCONNECTED SYSTEM RESULTS

The power system analyzed is the South-Southeast
Interconnected Brazilian system for a heavy load condition of the
vear 1893, The system model has 122 generators, 1800 buses, 2600
lines and one HVDC link. Sixty six generators and asgociaied
controllers are modeled in detail while the remaining are
represented as negative impedances.

Figure 5 shows the schematic diagram of the AC/DC Itaipu
Transmission System which delivers 12,600 MVA to the South and
Southeast Systems. :

For the purposes of this analysis all loads were modeled as

constant impedances and the stabilizing signal of [taipu 60 Hz
excitation was assumed disconnected.

Ibiuna 345kV

{0

[taipu 50 Hz 5200 MW

B

ltaipu 60 Hz Ivaipora 765kV
~ —~
el 4142 MW
B570 MW 1337 MW §

4556 MW

Schematic Diagram of Itaipu AC/DC Transmission
System

Figure 5.

Effect of HVDC Link Dynamics on
Major System Oscillatory Mode

In order to determine the influence of the HVDC link
dynamics in a major system oscillatory mode, for the particalar
system operating point, two cases were investigated: 1) no HVDC
dynamic modeling (negative impedance representation at Ibiuna
bus); 2) HVDC link model comprising converter equations, DC
line time constant, constant current control at the rectifier and
minimum area criterion for the inverter {iring control.

Eigenvalue = +0.120 +} 5.047

| =

1 - Jacui 5-G.B. Munhoz 8-S. Segredo
2 - P. Medici 6 - Capivara 9 - 8. Santiago
3-taipu-60Hz 7-I. Solteira 10 - Jupia

4 - Promissao

Figure 6. Rotor Speed Mode—Shape (A = +0.120 £} 5.047)



In both cases the system model showed an unstable
oscillatory mode between Itaipu and the South and Southeast
System, The critical eigenvalues were A = + 0.120 +j 5.047 for case
1 and A=+ 0.117 £#j5.010 for case 2. Figure 6 shows a phasor
diagram containing the participation of some generators in the
rotor speed mode—shape for the first case. The mode—shape for the
second case is practically identical to the firgt. One can therefore
conclude that the dynamic HVDC model has a small effect on this
0.8 Hz unstable mode in the absence of HVDC link modulation, for

the operating point investigated.

Stabilization of Bragilian System Model
through HVDC Link Modulation

The stabilizing signal design of any dynamic component in
the system can bhe obtained through {requency response
techniques. The reader is referred to [11] for a detailed description
on thig subject.

Figure 7 shows a block diagram which describes the
complete system dynamics throngh the HVDC link rectifier
control loop. This block diagram is similar to the ones used in [11]
for the design of stabilizing signals to generator excitation systems
and static VAr compensators.

DG current | de
DG current > J
controller . Fa(s)
lord y a
' . CCA(s) -
+
+
Vass S Fs (s)
—| DSS(s) |-
. stabilizer
stabilizing input variable
signal
Figure 7.  Power System Representation Through the HVDC
Rectifier Control Loop
Imaginary Axis
0.6 =
0.4 =
0.2 b ><:
0.0 ]
02
0.4 =
-06 -
-0.8 -
i i 1 1
1.2 -0.8 -0.4 0.0 0.4
Feal Axis

Figure 8. Nyquist Plot of APy(s) / Alra(s)

A Nyquist diagram was obtained for the transfer fanction

APys) ({ Alorg(s) (see Figure 8) where APy(s) denotes electrical
power deviations of Itaipu 60 Hz generator. The analysis of this
diagram shows there is no need for phase compensation in the
gtabilizing signal and that the minimum direct gain in the
stabilizer feedback loop required for system stabilization would be

around one. With such gain, the Nyquist plot for the open-loop
transfer function A Vygs{8) / Alora(s) 18 exactly like Figure 8 and
just encloses the —1 point in the desired counter-—clockwise

direction.

The critical eigenvalue has a good damping for a stabilizer
gain kges =10 (A=-029+j4.75), which gives a gain margin
slightly above 10 according to the Nyquist plot of Figure 8.

The HVDC control stabilizer transfer function DS5(s)
comprises a washout block with reset constant of 3 seconds and a
direct gain equal to 10. Note that the washout block is only needed
to ensure a zero stabilizer output in steady—state.

Time responses of this linearized system are presented in
figures 9 and 10 for a 1% step disturbance applied to the reference
voltage of the Itaipu 60 Hz excitation system. THe monitored
variables are voltage magnitude deviations at the buses Ibiuna,
Ivaipora and Itaipu. Figure 9 shows the Brazilian Interconnected
System response, without the Itaipu 60 Hz stabilizer, where the

-0.8 Hz unstable oscillations are quite evident.
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Figure 9. Unstable System Time Response (A = +0.117 £j5.010)
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Figure 10. Stable System Time Response (A = 0.29 £j 4.75)

Figure 10 shows the system response after stabilization
achieved through the use of the previously designed HVDC link



stabilizing signal.

Controller design i normally carried out through linear
techniques. Controller dynamic performance following large
disturbances should be verified by non-linear time response
simulations.

Effect of Transmission Voltage Level on Oscillation Damping

The study system here is practically the same as that of the
previous section. The major differences are: 1) the system loads
characteristics, which are now of the constant current (MW) and
constant impedance (MVAr) types; 2) the Itaipu 60 Hz generator
has its PSS properly included; 3) the Itaipu Transmission System
is now slightly overloaded.

Figure 11 shows the critical eigenvalue location for three
different voltage profiles of the Itaipu 7856 kV AC transmission
system. The results showed the damping of the critical oscillatory
mode to be very sensitive to the Itaipu transmission voltage level.
A low voltage profile along the 765 kV system may even lead to
oscillatory mode instability. These resnlts clearly reinforce the
need to adopt a high voltage profile strategy in the operation of
the 765 kV Itaipu Transmission System.
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Fignre 11. Critical Eigenvalue Location for Different Voltage

Levels

V. OTHER PACDYN RESULTS

Three other examples are given to illustrate the use of
PACDYN in the solution of different practical problems.

Centralized Control Strategy for Multiple
Static VAr Compensators in Long Distance
Voltage Supported Transmigsion Systems

The results of this section are taken from [25], which reports
succesfull results on the coordinated control of multiple SVC'sina
long distance voltage supported transmission system. Figure 12
sho[ws] the basic configuration of the transmission system analyzed
in [25]. :

The system contains a 9600 MV A power plant connected to
an infinite bus through three 765 kV circuits with total
transmission lenght of 1600 krn.

The generation dispatch considered yielded an operating
point with a large angular displacement (175} between the
generator field and the infinite bus voltage.

Reference [25] analises different SVC control strategies of
local and centralized nature. Control structure C of [25] has every
SVC with an individual controller modeled according to Figure 13,
having five input signals, apart from two reference voltage signals.

This SVC controller corresponds to a centralized voltage control
strategy (2 Vi) incorporating a secondary local voltage control
loop, with integral action and slower time constant. The
stabilizing signal to this SVC controller is also derived from the

sum of the terminal bus frequencies {X8) of the various SVC's (see
Fignre 14). Note that every remote bus voltage or frequency
chaunnel in Figures 13 and 14 has a single time lag of 5¢ ms to
model the telecommunication delay.
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Figure 12. Voltage Supported AC Transmission System
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Figure 13. Control Structure C — Centralized Voltage Control
Strategy with a Secondary Local Voltage Control
Loop (this diagram is for the SVC at bus 22)
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(this diagram is for the SVC at bus 22)

The centralized control strategy proposed in [25] is
conceptually simple, but leads 1o conirollers with a large number
of feedback signals. The user-defined controller routines of
PACDYN allow easy data preparation of controller structures
even more complex than those of Figures 13 and 14,



The results obtained showed that the centralized strategy
for voltage and oscillation damping comtrol is more robust [26]
than the traditional control which is based on local measurements.
This can be observed from the time response plots of Figures 15
and 16 which correspond to a line outage condition between buses
1 and 2 of the transmission system. Figure 15 shows the system
dynamic performance when having a traditional control scheme
where every SVC and its stabilizer sense only local variables.
Figure 16, on the other hand, corresponds to the centralized
control structure depicted in Figures 13 and 14. Both control
structures had been tuned for an adequate performance
considering a base case power flow. It is quite evident that the
centralized control struciure ensures an adequate dynamic
performance for the lineoutage condition while the traditional
control can not avoid system instability.
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Figure 15. Control Structure A with Local Frequency Stabilizer
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SVC Location for Damping Oscillations

The location of a SVC is determined taking into account
various factors, such as static and dynamic voltage support,
capability of damping electromechanical oscillations, etc. The
algorithm implemented in PACDYN is intended to find the best
SVC location for the sole purpose of damping electromechanical
oscillations. The algorithm is based on transfer function residues
and can determine the location of a SVC for a given operating
condition for power systems of any topology [10].

The two-area system chosen to be studied here is almost
identical to that of [27] except for the generator and excitation
control parameters which were not available. The transmission

Figure 18.

circuit was divided into ten sections of equal lenght yielding the
eleven-bus network shown in Figure 17. Various power flow
conditions were considered and residues associated with the inter-
area mode of oscillation caleulated for all transfer funciions
AVi(s)/ABy(s), i = 1,...,nb. The symbols AViand ABj denote
incremental changes in voltage magnitude and shunt admittance
at the +th system bus respectively. Integer nb denotes the total
number of buses in the system. The tridimensional surface of
Figure 18 shows the variation of the meduli of these residues as
function of both power transfer level and SVC location. It is seen
that the residues have larger magnitude for buses near the middle
of the tranamission circuit and that they increase with the power
transfer. When there is no power interchange between areas the
residues are comparatively very low and at the mid-point of the
iransmission circuit (bus 6) the residue is equal to zero.
Therefore, for this operating condition, the inter-area mode of
oscillation is not observable nor controllable from the' mid-point of
the transmission circuit.

ettt e e
SVC: Which Is the bast
bus to piace it?

Figure 17. Two-area test system
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These results are in accordance with [27] showing that the
SVC should be located near the mid-point of the transmission
circuit and that it becomes more effective in damping the inter-
area mode of oscillation for higher power transfer levels.

Zeros of Scalar and Matrix Travsfer Functions

The knowledge on the location of transfer function zeros
enables control engineers to carry out controller design more
effectively. There has recently been some increased interest in
zeros in associalion with the power system damping controt
problem [10,11,12,28,29.30]. The PACDYN algorithms for the
efficient calculation of zeros in large scale power system models
were presented in [{12]. This reference also contains results on



scalar and matrix transfer function zeros for a five-machine power
system and discusses their effect on the system stabilization. A
summary of these results are presented in this section.

The b-machine systern is shown in Figure 19 and full data is
provided in [11]. The machines are referred to as Gy, Ga, Gy, Gs
and Gy according to the buses where they are connected. Machine
Gy is a dynamic equivalent for a powerdmporting area which is
represented as a large synchronous motor. '
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Figure 19. 5-Machine System
This system has a pair of unstable eigenvalues

A= +40.646 +75.391 and any attempt to stabilize it through
excitation control on (G4 is bound to fail. Figure 20 shows the root
locus of the critical eigenvalues as the gain of a rotor speed-derived
stabilizer at the G4 generator is varied. The critical electromech-
arical mode ia seen to always remain unstable due to the ptesence
of an unstable pair of zeros in the Awd(s)/AVit{s) transfer
function (z = +0.049 +j 5.908}.

jw (r/s)
164
ITAIPY 14;/5/;"
EXCITER MDDE 26
‘ 24
22 134
20
12_
11
fe
74
ELECTROMECHANICAL ELECTROMECHANICAL
MODE 2 6 MODE 1
: O M
4 2
4 e 3 0
é
T 1
-8 0 .5
a{sact)

Figure 20. Root Locus as a Fuonction of the Gain of the
Stabilizer at the G4 Generator

The ability to calculate matrix transfer function zeros, or
transmission zeros, is useful in determining a minimum set of
generators for placing stabilizers and effectivelly damp unstable
oscillations. Transmiasion zero results are shown here for the 5-

machine system.

The transfer function matrix shown below relates ihe
reference voltages, A Vii{(s), of generators G, G, and Gy to their
rotoer speed deviations Awi( s):

AVilg) —~—| gyi(s g1:( s fs(s —— Awlsg
AVids) ——| gai(s)  geols goa( s —— Auis
AVAs) —|  guls)  gaals)  gaale —— Awl(s

This matrix has a transmission zero z= +0.61 +}5.34,
which is very «close to the unstable system pole
A= +0.646 +j 5.391. The multivariable root locus for this multi-
input-multi-output system, as the stabilizer gains at generators Gy,
G» and Gj are varied will have a root locus branch between this
unstable polezero pair, irrespective of the stabilizer transfer
functions.  This clearly shows that the unstable mode is
uncontrollable from these three generators.

On the other hand, the transfer function matrix:
i)
AVi4g) — | gs gaal s

—— Auwt(s
has well damped transmission zeros, the least damped being
z=-1.830+j9.157 and 2= -1.273 4-j6.635. Thig indicates that
the system can be made stable by adding stabilizers to generators
G and Gy, provided their parameters are properly chosen.

VI. CONCLUDING REMARKS

Despite the major algorithmic and theoretical developments,
there Is a pressing need for further research. This seciion
comments on some of the topics which deserve special attention.

A few decades ago the stability assessment of a
characteristic polynomial was carried out throigh use of the
Routh-Hurwitz criterion. Despite its limitations, It was used in
practice. Other root finding techniques were neither numerically
robust nor efficient for high order systems. With the advent of
modern computers, the use of state variable concept and the
powerful QR eigenvalue routines, stability assessment was made
possible for systems of much larger order. Present day limitations
stand between order 500 to 800 for a complete eigensolution of
asymmetric A, on a uniprocessor computer. Full eigensolutions
have recently been reported for power system models with 2200
state variables using a super computer [31].

Considering the case of the large scale dynamic systems, a
massive amount of computation and large CPU time is still needed
to answer two apparently simple questions: 12 is the system
stable? 2) which are the least damped eigenvalues?

The same problem, which existed a few decades ago,
remains: there is a need for a fast stability assessment method for
large scale dynamic systems. The S—matrix method, described in
(19], was an attempt in this direction. Despite the claims of their
originators, neither the authors of this paper nor Ontario Hydro
specialists {1] could however obtain satisfactory results with the
use of the S—matrix method.

There is intensive research activity in the development of
eigenvalue methods for use in parallel computers {32]. These
developments have already extended the application of
numerically stable QR method to state matrices of larger size.
Further developments could eventually provide an answer to the
present need for a fast stability assessment tool.

There is nc established methodology for the simultaneous
design of multiple controllers in large electrical power systems.
The conventional single-machine-infinite~bus equivalent has
worked well when tuning generator excitation control stabilizers
{PSS) in large systems %33]. The PSS’ in a multimachine



environment usually show robust performance and low dynamic
interaction. This is not the case with SVC’s or any other FACTS
devices, all of which have a high speed of response.

In & multiple FACTS environment, there may be a high
dynamic interaction between these devices and their tuning must
therefore be done in a more coordinated manner [25,34]). Multi-
variable frequency response techniques may provide a partial
solution to this problem. Multiple pole location techniques alsc
ghow interesting possibilities [35].

The possibility of fast partial eigensolution through use of
parallel computers may open the possibility of implementing this
function in future Energy Management Systems. One can envision
an even more appealing piece o% software as a long—term research
development: a security—constrained redispatch with post-
contingency corrective actions which ensures adequate damping of
system oscillations [35].

A recent development has given PACDYN the capability for
voltage stability analysis. The modal analysis methodology of [36]
has been implemented with additional improvements. Once the
critical eigenvalues associated with the voltage collapse have been
calculated, valuable information on corrective measures can be
obtained through transfer function residues. Residues can be used
to determine the critical branches and loads. The best generators
for voltage control and the best locations for additional veltage
gupport can also be determined,

The phenomena of fast voltage collapse Ssevera.l seconds
time frame% have a high interaction with the dynamics of the
various power system components and controllers: generators,
excitation systems, static VAr compensators, HVDC links, etc
L37,38,39,40,41]. The adequate simulation of these phenomena. is a
ighly complex task since results are very sensitive to the
modeling of the load dynamics. PACDYN represents a valuable
tool for the analysis of these problems.

We conclude by stressing the high henefits of having a
comprehengive linear analysis package for the study of small-signal
electromechanical and voltage stability problems. A good package
should allow the study of large, power systems, having a wide
variety of components and controller structures, in a CAE
environment, where various linear control methods can be used in
a complementary manner.
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