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Resume

Frequency response and eigenvalue techniques

are deseribed for the amalysis of small signal
stability of multimachine power systems. A highly
efficient algorithm is presented for the exact
calculation of eigenvalues and eigenvectors for
very large power systems. Stabilizer gain margins,
as affected by the addition of power system
stabilizers to other generators in the system, are
evaluated.
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1.

Introduction

The predominant hydrogeneration and the
associated long transmission lines of the
Brazilian power systems constitute a source of
potential problems for low damped electromechan-
ical oscillations. A great deal of attention has
been given to the study of this problem in this
country and a good number of generating plants
already incorporate power system stabilizers or
will have them installed in the mnear future.
This paper describes the preliminary results
obtained from a research work being carried out
in this field.

4 large amount of work has been done throughout
the world in the area of small signal dynamics
of power systems. The accumulated knowledge on
the mechanisms leading to the build-up of
undamped oscillations and also on the ways to
prevent these problems via control methods is
well developed [1,2,3,4].

The computation of the eigenvalues of the multi-
machine system state matrix through the QR
transformation method is an effective analysis
tool but can not handle efficiently aystems with
more than 200 state variables [5]. This limiting
factor gemerates continuous research efforts on
ways Lo obtain eigenvalues of power systems of
much larger order., In this paper a highly effi-

cient technique is presented for the exact
calculation of eigenvalues and eigenvectors for
very large power systems, which has low computer
memory requirements. This method requires the
formation of a very large and sparse system
Jacobian, and the preliminary results obtained
indicate that this technique will prove valuable
for the analysis of low damped electromechanical
oscillations of interconnected systems.

Frequency response analysis can readily be per-
formed using a variation of the .eigenvalue
algorithm and were used in this work for stabi-
lizer tuning in the multimachine envirooment.
This technique was also used in identifying the
best locations in the system for placing the
damping effort and in evaluating power system
stabilizer gain margins as affected by the pres-
ence of other stabilizers in the system.

State Space System Models

Two efficient multimachine state matrix formula-
tions were developed. The first caters for
different synchronous generators models and their
controllers, while the other alse incorporates
models for induction motors, non-linear loads,
static VAR compensators and generator incremental
saturation. Sparsity techniques are fully used to
engure efficient computation of the state matrix
while keeping the computer core reguirements to
the minimum. The more elaborate formulation is
here described as it is needed in the imple-
mentation of the proposed eigenvalue algorithm.

The eigenvalue and the transient stability
programs have a common input data format,which is
a very desirable feature as the system
eigensolution may be easily obtained before
transient stability runs are made [1]

The power system stability problem can be repre-
gsented by an algebraic—differential set of equa-
tions. The linearized system state matrix is
derived from the Jacobian of the entire set of
equations evaluated at an operating point [6]:
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which is then reduced to the state variables
only: AX = AX, where 4 = Jy - Jp . JJ Jo. The
matrix A eigenvalues determime the slngularp01nt
stability of the non-linear system.

The two state matrix formulations developed
allow eaay implementation of routines for the
computation of eigenvalue sensitivity
coefficients, The experience gained from the use
of eigenvalue sensitivity routines is summarized
in Section 5 of this paper.

An Efficient Eigenvalue Solution Algorithm

The inverse iteration method is mainly used for
the calculation of eigenvectors given a good
approximation of an eigenvalue [7]. It can also
be used for finding the eigenvalue which is the
closest to a point in the compiex plane and its
respective eigenvector. The basic Inverse
iteration algerithm can be described by:

A-ab Y mn
. o B (2)
Zk+l

max(Wk+l)

where 'k' is the iteration number, 'i' is the
identity matrix, 'q' the approximation of the
desired eigenvalue and max(Wk+1) is the element
of largest magnitude in this vector. The vector
Zy which has an arbitrary initial value,
corresponds to the desired eigenvector at
convergence.

Multimachine state matrices are asymmetrical and
not sparse, and the percentage of non-zero
elements usually yanges from 25 per cent to a
maximum of 66 per cent depending on the degree of

- system modelling. This fact can be visualized by

noting that current, voltage and electrical power
at any generator terminal must be expressed as an
explicit functicon of the internal voltagea and
rotor angles of every other generator in the
system.
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Figure 1 :Power System Jacobian
The hatched areas indicate sparse
blecks

The implementation of the inverse iteration
method in the form deseribed in equation (2) is
impractical for large systems since the matrix A
is not sparse. Thid method can however be
implemented in a very efficient form [8] if it is
applied directly to the Jacobian of equation (1),
which is very sparse.
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where J3 = (J, - qD),
intermediate results.

and R is a vector of

An important point as regards equation (3) is
that submatrix Jz should be triangulated first in
the matrix factorization, since non-sparse LU
factors would be ohtained otherwise, In order to
have a more efficient solution it is necessary to
adopt the same scheme used for the simultaneocus
solution of the tranmsient stability equations [9].
This involves grouping all differential and
algebraic equations for the various generators
into separate blocks so as to have only the
network equations on the lower part of the
Jacobian (Figure 1). Note that submatrix Jp
differs from the real (2nk x 2nk} nodal admit-
tance matrix by the (2x2) diagonal blocks
corresponding to the terms for the linear, non-
linear and induction motor loads,

The matrix equation for the inverse iteration
aigorithm is now given by
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and J' = (J - qL) where L is a diagonal matrix

with unltary vaiues at the state variable rows
and zero at the others. The subscript ‘nt'
corresponds to the total number of generators,
induction motors and static VAR compensators in
the system. The vector Wy4+j7 is contained in Wi+t
and at convergence corresponds to the desired
eigenvector. The vectors Q and Ui contain
intermediate results.

The submatrix Jp has the same sparsity structure
as the nodal admittance matrix and should be
ordered in a way to winimze fill-in during
factorization. Equation (4) should be solved in =
partitioned manner for higher efficiency [9,10]:
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The matrix J (JA)“I Jg is block diagomal and
each (2x2) diagonal block can be obtained from
the product Jé (JA]-)"1 Jgl where J§, J§ and Jé
are blocks associated to the "i-th" system
component (generator, induction motor or statie
compensator) . Note that each Ji can be
factorized separately, which allows large
savings in core requirements and solution time.
The transpose eipenvector, needed for eigenvalue
sensitivity calculations, can be obtained using
the same LU factors of J, and J§ by noting that
At = Ut LE,

Frequency Response Analysis of Large Power Systems

Frequency response analysis of very large order
systems have been performed for eigenvalue
estimation [11] and in the evaluation of
subsynchronous oscillatory stability [12]. &
common feature to the two methods above is that
a state matrix description of the system is
avoided in order to improve computational
efficiency. The linear incremental models
the network and generators are kept apart and a
combined solution is obtained at low cost for
discrete values of frequency in the range of
interest.

for

The system transfer function matrix, obtained
from the state gpace description, is given by
F(s) = C{sI-A)" " B+D, A variation of the
proposed algorithm for inverse iteratiom
(Section 3) can be used to efficiently obtain
the system matrix for discrete values of
frequency and, though less efficient than the
methods of [11,12], leads to a very flexible
computer implementation.

ad | Wp
1 AW
S §
MS
AE pss
| GE P(S) P8S(8)

Figure 2 :Transfer Function Model for Gemerator
and Excitation System - Torgue-~Angle
Loop Repregentation

Frequency response methods allow much deeper
insight into small signal dynamics than time
response methods, and have widespread use in
power system controller design. In studies of
stabilizer tuning the power system is gemerally
represented by a single generator commected to a
Thevenin equivalent or by a low order equivalent
model derived from frequency response measurements
at the field.

This paper reports on the experience obtained

with a computer program used for small signal

stability assessment and stabilizer tuning,which
produces frequency response plots considering the
dynamics of the entire multimachine system. Such
a detailed program is not generzlly necessary but
is very useful in the analysis of some difficult
cases., It is alse an important instrument in the
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evaluation of the variocus simplifying assumptions
usually adepted in this kind of study.

Both torque-angle loop and exciter loop analyses
are useful in stabilizer tuning methods, though
the latter due to excitation system flexibilit

is normally used in field measurement tests [3].
The stabilizer gain and phase margins can be
obtained from frequency response analysis applied
to the torque-angle loop broken at point B
(Figure 2} or to the exciter loop broken at point
D (Figure 3), but only the latter can be directly
measured in the field.
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Figure 3 :Transfer Function Model for Generator
and Excitation System - Exciter Loop
Representation

Power system stabilizer (PS8) tuning is gemerally
carried out by determining the phase lag of GEP(s)
(Figure 2) at the local and inter-area modes and
providing a phase lead (and adequate gain)through
the stabilizer in order to produce electrical
torque in phase with speed [3]. The computer
program developed can caleulate GEP(s)cousidering
the dynamics of the entire multimachine system.

A few points of interest are worth mention
regarding the exciter—lecop amalysis (Figure 3}:

a) By breaking simultaneously the leop at points
C and D, the resulting cpen loop transfer
function has the automatic veltage regulator
(AVR) as an explicit function. As a consequence,
AVR gain and phase margins can readily be
obtained [13].

b) By breaking the loop at point D, the gain and
phase margins of the stabilizer canbe obtained
A generally adequate PSS design for local mode
damping can be obtained by applying Nyquist
criterion to this open loop tramsfer function.

¢) The excitation system closed loop frequency
response plots AEq(s)/AVg(s), with and without
the PSS, can be compared with field tests in
order to verify the adequacy of the models
used in the studies. They also help to confirm
the effectiveness of the PSS in improving
system performance [14]. '

The multimachine system closed loop transfer
function is described in Figure 4, where only
the exciter loops for the various generators are
explicitly shown. The major part of the
computational effort in the method here described
concerns the calculation, for every discrete value
of frequency in the range of interest, of the
system matrix G. Therefore, the set of matrices
G{jw) for the different frequencies are stored in
disc and are used as many times as necessarywhile
the designer decides on the L matrix which:appears
to give the best results, or determines the gain
margins for the stabilizers in the system. The
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Figure 4 :Power System Closed Loop Tramsfer Function Model

redundancy in the rotor angle states is removed
before obtaining the system matrix G in order to
eliminate the open loop'transfer function pole
at the origin. -

The multimachine system closed loop tramsfer.
function is given by LGK(s)/(I+LGK(s))and system
stability cam be determined by applying the
standard Nyquist criterion to the determinant of
(I+LGK(s)) [13]. In the work here described the
single-input-single-output Nyquist criterion is
used to deterwmine system stability and to design
power system stabilizers. This is carried out by
opening the i-th generastor exciter loop at
peints C and D (See Figure 2), while keeping all
the other exciter loops c¢losed. The dynamic
effects of the controller loops for all the
other generators are reflected in the transfer
functions relating the "i-th" generator
variables, through a Gaussian elimination
process. The final results are the values, for
the specific frequency signal applied, of the
transfer functions ﬂE%(S)/ﬂEi (s) and
AWl(s)/AEln(s) which can then be connected and
analysed in the three different ways already
described. It should be noted that as generator
'i' is generic, AVR and PSS gain and phase
margins may be obtained for every generator in
the system.

Eigenvalue Studies

Some general conclusions drawn from eigenvalue
analysis are here briefly described. The results
obtained from sensitivitystudies showed that first
order eigenvalue sensitivity is a very desirable
analysis tool for large systems while second
order sensitivity coefficients were found to be
completely inadequate. Actually, in our large
system studies second order sensitivity
coefficients always led to worse eigenvalue
estimates even for increments as small as .1 per
cent in certain system parameters. The evidence
is that there is simply no point in using second
order terms in the Taylor expansion if for
practical parameter increments the series is not
monotonically convergent.

Induction motors, when compared with linear
impedance loads, were found to have a
stabilizing effect on synchronous generator
hunting modes and this is more prominent in the
absence of automatic excitation. The effects of
motor inertia were found to be relevant but

the load torque characteristic had negligible
influence on system small signal dynamics.

Saturated generators operating in the over—
excited region were found to have stability
limits about 20 to 25 per cent greater than
those of the unsaturated machines, these

results being in line with those of Crary [15].
On the other hand, generator incremental
saturation effects proved minimal when automatic
excitation was incorporated to the system,
reinforcing the results obtained in Elﬁ].
Therefore, the importance given in some
publications to the representation of generator
incremental saturation in the study of regulated
power systeme is not justified according to

the results cobtained.

. Frequency Response System Studies

6.1 Single machine infinite bus system

A single machine system is discussed here
where a local load is supplied by the
generator and by the infinite bus through

a high impedance transmission line (same as
system B of Reference [4]. An eigenvalue
analysis of this system showed it to have a
very low damped electromechanical mode
which is unaffected by variations in the AVR
gain, The analysis of GEP(s) revealed that
no phase advance was necessary for the
power system stabilizer and the Nyquist
criterign applied to the system excitation
loop confirmed this fact. Considering the
P83 transfer function as a pure gain, the
root-locus analysis showed the undamped
pole moving towards the left plane, as the
gain increased, with no change in its
imaginary component. This denoted that PSS
action was providing pure damping torque

to this system and therefore, the frequency
of oscillation did not alter [3]. An
interesting observation was that the
inatability gain for the rotor speed input
stabilizer was more than ten times larger
than an approximatly optimum value of gain,
Therefore, one may conclude thatthe
recommended practice of setting the
stabilizer gain to a third of the instability
value does not apply in all cases.

6.2 Nine machine system

Studies were carried out on a real nine
machine system which presented low damped



oscillations, and the results obtained
checked with those of the eigenvalue |
analysis, The Nyquist plots AE%(jw)/AVi(jw),
i=l, ..., 9, were calculated for aparticular
leading condition and indicated that only
for one generator instability could appear
by raising the AVR gain. The very same
information could however be obtained using
a single machine system representation: the
particular gemerator against the equivalent
Thevenin far the whole system.
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Figure 5 :Nyquist Plot AEp{s)/AVg(s) for
Generator No. 8 - All Generators
without Power System Stabilizers

Frequency response polar plots can give
indication of the presence of low damped
medes of oscillation in large power systems
[12]. Figure 5 shows a Nyquist plot

AEp{jw) /AVz{jw) for a particular generator
which indicates the presenmce of two low
damped stable modes and of an unstable
mode, the latter being identified by the
fast counter-clockwise changes in the plot.
These observations were confirmed by
eigenvalue analysis and these troublesome
poles are: - .209 + jB.03, - .167 + j9.71

e + ,110 + jll.6.

In the present analysis the denominater of
the open loop transfer function
(characteristic polynomial)} changes when the
observation point is moved from one generator
to another. This fact may be used to
advantage in order to cbtain additional
information on the complex dynamic
interactions of the gystem. The closed loop
transfer function, seen from any generator
in the system has obviously the same
characteristic polynomial, but due to pole-
zere cancellation a system low damped mode
may not be observed from a particular
generator. The fact that a low damped mode
is clearly observed in a Nyquist curve for a
particular generator may be an evidence that
stabilizing action at this generator will
have an effect on the damping of this mode.

The plot shown in Figure 6 differs from that
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of Figure 5 by the fact that power system
stabilizers have been added to four other
generators in the system. The correct locatim
and tuning of the stabilizers damped out the
three troublesome modes of the system.
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Figure 6 :Nyquist Plot AET(S)/AV (§) for
Generator No., 8 - Stabilizers
Added to Four Generators in the
System

A frequently asked question concerns the
detrimental effect stabilizers at other
locations in the system may have on the gain
margin of a particular genmerator stabilizer.
There is a consensus that this effect is not
very significant, but this remains to be
quantified. The frequency response program
described in this paper allows an easy
determination of this effect.

Table 1 contains the results obtained for the
same nine-machine system, whith in the absence
of stabilizers shows instability due to AVR
negative damping at generator No. 9., The
maximum gain defined in this table corresponds
to the stabilizer gain which would cause the
"exciter mode'" of generator No. 9 to go
unstable, The minimum gain is that value
below which the stabilizer action would not
prevent system instability caused by AVR
negative damping.

The gain margin of the stabilizer at generator
No. 9 was initially set to approximately omne-
third of the instability gain, as in normal
practice [3]. Note that the gain margin is
unaffected by the addition of stabilizers to
the other machines. The minimum gain required
to stabilize the system, as shown in Table 1,
is initially 0.1. As other stabilizers are
added to the gystem this.gain is generally
reduced, showing a damping contribution from
the other stabilizers to this troublesome
mode. In one occasion the addition of another
stabilizer causes a small increase in the
minimum gain, indicating an unstabilizing
effect which is however of no significance
compared to the normal settings of stabilizer
gains. It is also seen from Table 1 that a
stabilizer is not needed at generator No. 9
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(minimum gain is zero) in order to maintain
system stability as long as stabilizers are
fitted to most of the other generators.

e or | GENERATOR Mo |
IN THE SYSTEM MAXIMUM* MINIMUM*
1 3.33 .108
b 3.33 .108
3 3.33 .111
4 3.31 .090
3 3.28 046
6 3.29 .038
7 3.26 026
] 3.23 8.0
9 3.23 0.0
Table 1 : Gain margins for stabilizer at

generaton No. 9 as affected by the
addition of stabilizers to other
generatoxs

% These values are given as multiples of the
actual stabilizer gain.

The results listed in Table 1 and those
obtained from the analysis of other systems
strongly indicate that widespread use of
stabilizers in power systems 1s a very sound
strategy.

Conclusionsg

A small-scale version of the proposedeigenvalue
algorithm showed very promising results and a
large scale version is presently under
development. It is thought this algorithm will be
useful in the analysis of low damped
electromechanical oscillations in large power
systems.

The frequency response technique described in
this paper has proved valuable in locating the
most effective points in the multimachine system
for placing the damping effert and also in
tuning power system stabilizers, This technique
allows the evaluation of stabilizer gain margins
as affected by the addition of power system
stabilizers to other generators in the system. It
is also an important instrument for verification
of the adequacy of stabilizer tuning in the
multimachine environment based on approximate
field measurements of CEP(s) [3].

The results shown for the nine machine system
and those obtained for other systems gave no
evidence that interaction between the various
stabilizers in the system can be detrimental to
overall stability. The problems involving intra-
plant modes as described in [17] must be regarded
as a special case of detrimental stabilizer
interaction. The results listed in Table 1 show
that widespread use of stabilizers in the system
may prevent system instability even on the
occurrence of stabilizer failure at the most
critical point in the system. The results of
this work are favourable to the recommendation
that stabilizers should be installed in all new
generating plants, even when not needed for local
mode damping since they can provide damping to
inter-area modes under normal operation and
during contingencies [3].

The frequency response studies described in this
paper were made using a linear impedance
representation for ail system loads. Future
studies will involve determining power system

damping requirements in the presence of a large
amount of non-linear loads. Aspects of
coordinating penerater stabilizers with other
modulation signalis in HVDC links and static
compensators will alsc be investigated.
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