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Introduction (1/3)

Recent developments and increased use of modal analysis in
studies of electrical, mechanical and civil engineering as well as

in many other fields

Good opportunities for use of modal equivalents in power
system dynamics and control, harmonic analysis and real-time

simulations of electromagnetic transients

The concept of transfer function pole dominance has been little

exploited in Numerical Linear Algebra

First power system applications: AESOPS algorithm [Byerly,
1978; Kundur, 1990 ] and Selective Modal Analysis [Pagola,
1988]



I Introduction (2/3)

* Need for improved numerical robustness and more general
eigensolution selectivity in small-signal stability analysis and
power system controller design

* C(Clever implementation of Newton- Raphson algorithm applied
to specified transfer functions: the Dominant Pole Algorithm
(DPA) described in [Martins et alli, 1996]. Solves for one
eigenvalue at a time.

* A generalization of DPA later described in [Martins, 1997], the
Dominant Pole Spectrum Eigensolver (DPSE), can
simultaneously solve for several dominant poles of a given
scalar transfer function F(s)



Introduction (3/3)

e The Multivariable Dominant Pole algorithm (MDP), described
in this paper, 1s a generalization of the DPA and solves for
dominant poles of a given multivariable (MIMO) transfer

function F(s)

 MDP is a clever implementation of the Newton-Raphson

algorithm applied to a given matrix function F(s).

 MDP i1s a one-eigenvalue-at-a-time method, but makes efficient

use of deflation techniques to find subdominant poles of F(s).



The MDP Algorithm

Let k=1
Given G(s)=C - (sI-A)'-B
Initialize the eigenvalue estimate: s,

u(l) =u(s, )

Initialize the the complex vectors: u(s,) and y(s,) Jori=1,2 .., maxit
z(i+1) = G(s,) "u(i)
- . z(it+1)
=+ =
‘ R Py
Power method (right) end
v -
Power method (left) y(H)=y(s, )

A

Y
Solve(s,I-A ) x(s)= B -u(s,)

k=k+1

Solve (s,1-AT) " v(s,) =-C""y(s)

Y

V(s A x(sy)
k+1 VT(Sk) . X(Sk)

v

Shift update ¢

Convergence

tol = A x(s,) - s,/ X(s,)

test

forj=1, 2, ..., maxit
w(i+1) = G7(s,) " y()
. wW(tD
YU = Twenl

end




Basic Concepts Leading to Modal Equivalents

of Scalar F(s)
Partial Fraction -~ R
Expansion Fls)= ; s—A
1 & R 1
Step Input y(S):F(S);zZ‘S_/I';
O R
Inverse Laplace y(t) = ZT(Q 1)

Transform i=1 4



B Modal Equivalents of Multivariable Transfer

Functions

* An m X m transfer function G(s) may be expanded in terms of
the system poles and associated residue matrices that also has
dimension m X m:

G2
i=1 I

* The truncated sum below 1s the modal equivalent:

P
G(s) ~ Z R/il , where p << n



. MDP Results on the North-South Brazilian System
(Power System Operations Model for year 2,000)

2370-Bus, 3401 lines, 60,000 MV A generating capacity

123 machines, 99 speed-governors, 46 PSSs
e 4 SVC(Cs, 2 TCSCs, one 6,000 MW HVDC link

* Descriptor system matrix of order 13,062 with 1,676 state

variables

e Multivariable Transfer Function G(s) 1s a (8 X 8) matrix



Matrix Structure of the N-S Interconnection
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Descriptor System Matrix has 13 K lines and 48 K nonzero elements
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QR Eigensolution Results

radians / second

1/ second

Eigenvalue Spectrum of North-South Interconnection
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radians / second

Dominant Pole-Zero Spectrum of G(s)g, 5

 Full Model has order 1,676, but there 1s a large pole-zero

cancellation
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Poles pictured by asterisks and zeros by black circles
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MDP Results for G(s)g, 5

Performance of the MDP Algorithm

Initial Shift s Converged Eigenvalues
—0.0759 +0.5; —0.1158 +0.2445j (12)
—0.1517 +1.0; —0.3179 +1.0437j (6)
—0.4551 +3.0; —0.5199 +2.8814j (6)
—0.9103 +6.0; —1.2098 +8.1765j (7)
—1.2137 +8.0; —1.1129 +8.0075j (4)
—1.2896 +8.95; —1.2902 +8.5407j (6)
—1.3654 +9.0; —1.4778 +8.2550j (6)
—2.2757 +15.0j —2.8323 +10.3949j (06)

The numbers within parenthesis denote iterations required for

tight convergence (1.0e-10)
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I Modal Equivalent of T. Function G(s)g, 5

 Sigma-plot for 8 X 8 G(s), =0
 Full Model order is 1,676. Modal Equivalent has order 16
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Modal Equivalent of T. Function G(s)g, 5

 Sigma-plot for 8 X 8 G(s), = 15%
 Full Model order is 1,676. Modal Equivalent has order 16
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I Modal Equivalent of T. Function G(s)g, 5

* Sigma-plot for 8 X 8 G(s), {=15%

e Full Model order is 1,676. Modal Equivalent now has order 20, as the 2
missing complex poles have been included
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I Modal Equivalent of T. Function G(s)g, 5

 Sigma-plot for 8 X 8 G(s), = 15%
 Full Model order is 1,676. Modal Equivalent has order 39
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I Modal Equivalent of T. Function G(s)g, 5

 Sigma-plot for 8 X 8 G(s), =0
 Full Model order is 1,676. Modal Equivalent has order 39
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Step Responses y;(s) for 39" - order Modal
Equivalent for g;(s)

1 2

g ~ Rl] Ayt ij Ayt
vi(t) = ) (e 1) + . (e 1) +
R’ >
+ Lt =)+ + L (e 1)
3 39

where the complex conjugate poles and residues are
imbedded in the above equation

A o=—.1158+2445; 1, =—.1158—.2445;
A3=—-.3179+1.0437 A, =—3179-1.0437;
/159169"'91389139
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Modal Equivalent of T. Function G(S)g,4

* Step responses for g;(s) scalar transfer functions for the full
model and the 39"-order modal equivalent
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I Dominant Poles of G(S)g, 5

 Full model order is 1,676. Modal equivalent has order 39. All poles
computed by the MDP algorithm
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Only poles are pictured (by asterisks) in this figure -



Conclusions

The Multivariable Transfer Function Dominant Pole (MDP)
algorithm operates on the state-space or the sparser descriptor
system models of large dynamic systems

MDP is a clever implementation of the Newton Raphson
eigensolution algorithm applied to the multivariable transfer
function: G(s)=C - (sI-A)1-B+D

Convergence domain of the eigensolutions are larger for poles
having high controllability/observability in G(s)

Subdominant poles of the multivariable G(s) are obtained by
using other initial estimates and eigenvalue deflation techniques

May automatically produce modal equivalents of G(s)
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