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Introduction (1/3)
• Recent developments and increased use of modal analysis in 

studies of electrical, mechanical and civil engineering as well as 
in many other fields

• Good opportunities for use of modal equivalents in power 
system dynamics and control, harmonic analysis and real-time 
simulations of electromagnetic transients

• The concept of transfer function pole dominance has been little 
exploited in Numerical Linear Algebra

• First power system applications: AESOPS algorithm [Byerly, 
1978; Kundur, 1990 ] and Selective Modal Analysis [Pagola, 
1988]
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Introduction (2/3)
• Need for improved numerical robustness and more general 

eigensolution selectivity in small-signal stability analysis and 
power system controller design

• Clever implementation of Newton- Raphson algorithm applied 
to specified transfer functions: the Dominant Pole Algorithm 
(DPA) described in [Martins et alli, 1996]. Solves for one 
eigenvalue at a time.

• A generalization of DPA later described in [Martins, 1997], the 
Dominant Pole Spectrum Eigensolver (DPSE), can 
simultaneously solve for several dominant poles of a given 
scalar transfer function F(s)
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Introduction (3/3)

• The Multivariable  Dominant Pole algorithm (MDP), described 
in this paper, is a generalization of the DPA and  solves for  
dominant poles of a given multivariable (MIMO) transfer 
function F(s)

• MDP is a clever implementation of the Newton-Raphson
algorithm applied to a given matrix function F(s).

• MDP is a one-eigenvalue-at-a-time method, but makes efficient 
use of deflation techniques to find subdominant poles of F(s).
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The MDP Algorithm
Let k = 1

Shift update

Convergence
test

Stop

Initialize the eigenvalue estimate: s1

Given G(s) = C . ( sI - A )-1 . B

Initialize the the complex vectors:  u(s0) and y(s0)

Solve ( skI - A  ) . x(sk) =    B   . u(sk)
Solve ( skI - AT ) . v(sk) = - CT . y(sk)

vT(sk) 
. A . x(sk)

vT(sk) . x(sk)
sk+1=

tol = A . x(sk) - sk+1
. x(sk)

1+=kk

for  j = 1, 2, ... , maxit
y (1) = y (sk-1)

w (j+1) = GT
 (sk) . y (j)

y (j+1) =
w (j+1)
w (j+1)

end

for  i = 1, 2, ... , maxit
u (1) = u (sk-1)

z (i+1) =  G (sk) 
. u (i)

u (i+1) =
z (i+1)
z (i+1)

endPower method (right)

Power method (left)
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Modal Equivalents of Multivariable Transfer 
Functions

• An m x m transfer function G(s) may be expanded in terms of  
the system poles and associated residue matrices that also has 
dimension m x m:

• The truncated sum below is the modal equivalent:
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MDP Results on the North-South Brazilian System 
(Power System Operations Model for year 2,000)

• 2370-Bus, 3401 lines, 60,000 MVA generating capacity 

• 123 machines, 99 speed-governors, 46 PSSs

• 4 SVCs, 2 TCSCs, one 6,000 MW HVDC link

• Descriptor system  matrix of order 13,062 with  1,676 state 

variables

• Multivariable Transfer Function G(s) is a (8 x 8) matrix 
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Descriptor System Matrix has 13 K lines and 48 K nonzero elements

Matrix Structure of the  N-S Interconnection
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Eigenvalue Spectrum of North-South Interconnection

QR Eigensolution Results
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Multivariable Transfer Function G(s) has Dimension (8 x 8)

G(s)

5015∆Ω
5016∆Ω
5022∆Ω
6294∆Ω
5061∆Ω
5051∆Ω
5054∆Ω
5030∆Ω

5015Pref∆
5016Pref∆
5022Pref∆
6294Pref∆
5061Pref∆
5051Pref∆
5054Pref∆
5030Pref∆

MDP Results for G(s)
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Dominant Pole-Zero Spectrum of G(s)8 x 8

• Full Model has order 1,676, but there is a large pole-zero 
cancellation 

-15.

-10.

-5.

0.

5.

10.

15.

-10. -5. 0.
1 / second

Poles pictured by asterisks and zeros by black circles 
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MDP Results for G(s)8 x 8

–2.8323 +10.3949j (6)–2.2757 +15.0j
–1.4778 +8.2550j (6)–1.3654 +9.0j
–1.2902 +8.5407j (6)–1.2896 +8.5j
–1.1129 +8.0075j (4)–1.2137 +8.0j
–1.2098 +8.1765j (7)–0.9103 +6.0j
–0.5199 +2.8814j (6)–0.4551 +3.0j
–0.3179 +1.0437j (6)–0.1517 +1.0j

–0.1158 +0.2445j (12)–0.0759 +0.5j
Converged EigenvaluesInitial Shift s

Performance of the MDP Algorithm

The numbers within parenthesis denote iterations required for 
tight convergence (1.0e-10)
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Modal Equivalent of T. Function G(s)8 x 8

• Sigma-plot for 8 x 8 G(s), ξ = 0
• Full Model order is 1,676.  Modal Equivalent has order 16
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Modal Equivalent of T. Function G(s)8 x 8

• Sigma-plot for 8 x 8 G(s), ξ = 15%
• Full Model order is 1,676.  Modal Equivalent has order 16
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Modal Equivalent of T. Function G(s)8 x 8

• Sigma-plot for 8 x 8 G(s), ξ = 15%
• Full Model order is 1,676.  Modal Equivalent now has order 20, as the 2 

missing complex poles have been included
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Modal Equivalent of T. Function G(s)8 x 8

• Sigma-plot for 8 x 8 G(s), ξ = 15%
• Full Model order is 1,676.  Modal Equivalent has order 39
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Modal Equivalent of T. Function G(s)8 x 8

• Sigma-plot for 8 x 8 G(s), ξ = 0
• Full Model order is 1,676.  Modal Equivalent has order 39
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where the complex conjugate poles and residues are 
imbedded in the above equation

j2445..1158  1 +−=λ

j0437.13179.  3 +−=λ

Step Responses yij(s) for 39th - order Modal 
Equivalent for gij(s)

j2445..1158  2 −−=λ

j0437.13179.  4 −−=λ

393865 ,, ,, λλλλ L
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Modal Equivalent of T. Function G(s)8x8

• Step responses for gij(s) scalar transfer functions for the full 
model and the 39th-order modal equivalent

Note: Vertical axes given in rad/s and horizontal axes in seconds
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Dominant Poles of G(s)8 x 8

• Full model order is 1,676. Modal equivalent has order 39. All poles 
computed by the MDP algorithm 

Only poles are pictured (by asterisks) in this figure 
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Conclusions

• The Multivariable Transfer Function Dominant Pole  (MDP) 
algorithm operates on the state-space or the sparser descriptor 
system models of large dynamic systems

• MDP is a clever implementation of the Newton Raphson 
eigensolution algorithm applied to the multivariable transfer 
function: G(s) = C ⋅ ( sI – A )−1 ⋅ B + D

• Convergence domain of the eigensolutions are larger for poles 
having high controllability/observability in G(s)

• Subdominant poles of the multivariable G(s) are obtained by 
using other initial estimates and eigenvalue deflation techniques

• May automatically produce modal equivalents of G(s)


