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Summary

This paper describes two network modeling approaches.
The s-domain or Y(s) and descriptor system approaches.
Both approaches are suitable for perform the modal
analysis of the electrical system. Modal analysis
provides important system dynamic information that can
be used to improve its harmonic performance. The
practical use of this dynamic information is shown
through the analysis and solution of an industrial system
harmonic problem.

Keywords: Network analysis, modal analysis, power
system harmonics, poles and zeros, sensitivities.

1. Introduction

Conventional harmonic analysis of electrical systems is
based on the computation of the nodal admittance matrix
for discrete values of frequency over a desired frequency
range. The main advantage of this method is that the
admittance matrix is quite straightforward to build. This
approach consists basically on frequency response
analysis.

On the other hand, modal analysis consists of the
calculations of the system poles and transfer function
zeros as well as their sensitivities to changes in system
parameters. The importance of the modal analysis in the
study of harmonic problems has been increasingly
emphasized in the technical literature [1]-[5]. It is based
on the fact that the harmonic voltage performance of a
system depends on the location in the complex plane of
its poles and zeros with respect to the critical harmonic
frequencies.

The conventional harmonic analysis is performed over
the jω axis of the complex plane. Thus, only the
combined effect of the poles and zeros can be observed
from a frequency response of a system transfer function.
This analysis does not allow the modal decomposition of
the system that is very useful to understand the causes
and find cost-effective measures to mitigate harmonic
problems.

Some recent papers use the descriptor system approach
[3], [4] to model the electrical network for modal
analysis. This method automatically deals with state
variable redundancies and can be easily and efficiently
applied to large-scale networks of any topology. As
main drawbacks, this method presents difficulties in
modeling frequency dependent parameters and leads to
system matrices much larger than the number of system
buses.

Another recently proposed method is based on the
system nodal admittance matrix in the s-domain, Y(s)
[5]-[8] and also has the ability to compute poles, zeros
and residues as well as their sensitivities. Since the
electrical network equations are written directly in the
complex frequency domain, the modeling of frequency
dependent parameters are easily accomplished and the
dimension of the Y(s) matrix is obviously equal to the
number of system buses. The main drawback of this
method is the impossibility of calculating all system
poles at once. The system poles calculation is carried
out using Newton based one-eigenvalue-at-a-time
iterative methods [6].

This paper will describe some basic ideas behind these
two approaches and their use in the study of an
industrial system.

2. Network Modeling Approaches

For sake of brevity only the modeling of RLC elements
will be utilized to present the two approaches. Modeling
of transmission lines and two and three-winding power
transformers are presented in [9], [10] for descriptor
system and in [5], [7] for the s-domain approach.

3. Descriptor System Approach

The dynamic behavior of an electrical network is
governed by: Kirchhoff’s current law (KCL),
Kirchhoff’s voltage law (KVL) and the equations
describing the inherent dynamic characteristics of each
network element [11].



The Kirchhoff’s laws (KCL and KVL) are algebraic
equations containing the information on system
topology. Each algebraic equation determines a linear
dependence among system variables (voltages and
currents). The dynamic characteristics of the inductive
and capacitive elements are described by first order
differential equations, in terms of currents and voltages.
The inductive currents and capacitive voltages represent
the obvious choice of state variables.

The network modeling by the descriptor system
technique assumes that all inductive currents and all
capacitive voltages are state variables. The
interconnection among the various network elements is
modeled by a set of equations describing the KCL
applied to each system node.

3.1 RLC Series Branch

A RLC series branch connected between the nodes
(buses) k and j is depicted in Figure 1.
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Figure 1: RLC series branch

The electrical behavior of this element can be described
by a set of two ordinary differential equations of first
order:
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where vk and vj are the voltages of nodes k and j,
respectively, kji  is the branch current and vC  is the

capacitor voltage. When there is no capacitor in the
branch, (1) and (2) must be replaced by:
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3.2 RLC Parallel Branch

A RLC parallel branch connected between the nodes k
and j is shown in Figure 2.
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Figure 2: RLC parallel branch

The equations related to this element are:

kj
C

L
C i

dt

dv
Ci

R

v =++ (4)

C
L v

dt

di
L = (5)

jkC vvv −= (6)

where vk and vj are the voltages of nodes k and j,
respectively, kji  is the branch current, vC  is the

capacitor voltage and iL is the inductive current. When
there is no inductor in the branch, (4) and (5) must be
replaced by:
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3.3 KCL Equations

The KCL equation applied to nodes k and j
(independently of which element are connected between
them) yields, respectively:

( )
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kjm

kjmj ii 0 (9)

where ( )jk ≠Ω  is the set of all nodes connected to node k,

except node j, similarly ( )kj ≠Ω  is the set of all nodes

connected to node j except node k.

Note that kji  in (8) and (9) is a current from node k to

node j, i.e., a positive current injection at j and negative
at k.

After interconnecting the equations for all RLC
branches, the following descriptor system equation is
obtained:
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1T  is a diagonal matrix and 1A  block-diagonal; 2A

and 3A  are “incidence matrices” for the descriptor

system. Symbols 0 and q0  denote null matrices and I is

the identity matrix. The superscript T denotes matrix
transposition and a dot over a vector its time derivative.

The matrix equations (10) and (11) can be written in
compact form:

uBxAxT    += (12)
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4. S-Domain Approach

The network is modeled by the Y(s) matrix, where s is
the complex frequency given by ω+σ= js . This matrix

is built just as the nodal admittance matrix Y(jω). Thus,
a diagonal element iiy  of the nodal matrix Y(s) is

calculated as the summation of all elementary
admittances connected to node i. On the other hand, the
off-diagonal elements ijy  are equal to the negative

value of the summation of all elementary admittances
connected between the nodes i and j.

Replacing the purely imaginary frequency jω for the
complex frequency s is needed to perform modal
analysis.

The first derivative of Y(s) with respect to the complex
frequency s is also required [5] - [7] for use in the
Newton eigensolution algorithms. This derivative can be
easily obtained following similar rules to those for
building the Y(s) matrix. For instance, consider a
parallel and a series RLC branch. They have the
following admittances as complex frequency functions:
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The derivatives with respect to s of (14) and (15) are
given, respectively, by:
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5. The Industrial System

The harmonic problem investigated in this paper is
related to the industrial system shown in Figure 3. The
data related to the linear loads, capacitor banks,
transformers and bus voltage are shown in this figure.
The linear loads were modeled by parallel RL branches.
The 138 kV system is modeled as a voltage source in
series with an equivalent short circuit impedance. All the
circuits (lines) in the industrial system studied have the
same electric parameters per-unit length
(equal to km,133.0 Ω=R km39.0 Ω=ωL  and

km0132.0 FC µ= ) and were modeled using single π-

circuits. The line lengths (in km) are given in Table 4.
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Figure 3: Industrial system

Table 1: Line lengths of the industrial system

Bus from Bus to length Bus from Bus to length
10 11 1.4 25 26 1.0
11 12 0.9 10 31 1.1
12 13 0.8 31 32 0.7
13 14 0.7 32 33 1.3
10 21 1.0 33 34 1.2
21 22 0.9 33 35 0.7
22 23 1.2 10 41 0.8
22 25 0.8 41 42 0.8
23 24 1.5 42 43 1.3



The harmonic problem consists in choosing, between
buses 101 (option 1) or 201 (option 2), which is the best
bus for placing a 12-pulse industrial rectifier. The total
current at fundamental frequency drawn by this rectifier
is 5.5 kA. The harmonic current components (Ih) are
given in Table 2 as percentage values of its fundamental
current.

Table 2: Harmonic current components

h 11 13 23 25
Ih(%) 9.0 8.0 4.0 4.0

6. Analysis of Option 1

The modulus of the transfer-impedance between the
buses 101 and 13 (Z101,13) is plotted in Figure 4. The bus
13 was chosen in this tutorial example for having high
harmonic distortions.
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Figure 4: Transfer-impedance Z101,13

The industrial system was modeled by the two described
approaches. The system poles and transfer functions
(transfer impedances) zeros can be calculated using
Newton based one-eigenvalue-at-a-time iterative
methods [6] using either one of the two methods. For the
descriptor system there is also the option of calculating
all eigenvalues at once using the QZ eigenroutine [12].
In this case the poles are the generalized eigenvalues of
finite modulus of the matrix pair { }TA, . Both modeling

approaches yield exactly the same results.

It must be pointed out that if one wants to model some
set of frequency dependent parameter this could be
accomplished very easily by using the s-domain
approach. In this case this set could be, firstly, fixed at
its fundamental frequency values and the descriptor
system approach could be used to calculate all poles and
zeros at once using the QZ eigenroutine. The numerical
values of these poles and zeros could then be used as
initial guess for a Newton based one-eigenvalue-at-a-
time iterative methods using the s-domain approach and
taking into account the frequency variation of the
parameter set.

The imaginary parts of the poles divided by 2 π are the
parallel frequency resonance or the frequencies (in Hz)
associated with the poles. Similarly the imaginary parts
of the zeros divided by 2 π are the series frequency

resonance or the frequencies associated with the zeros.
The frequencies associated with the poles and their
sensitivities [1] - [5] to the capacitances of the industrial
system are presented in Table 3. These sensitivities are
given in Hz/µF. Similarly, the frequencies associated
with the zeros of the transfer-impedance Z101,13 and their
sensitivities are given in Table 4. In these tables C13

denotes the capacitor connected at bus 13 and so on.

The poles of the industrial system and Z101,13 zeros
spectra are shown in Figure 5. Note that only those poles
and zeros with frequencies in the range between zero
and 1500 Hz were plotted in this figure.

Table 3: Frequency associated with the poles and
their sensitivities to capacitor changes

P1 P2 P3 P4 P5 P6

f (Hz)→ 337 640 829 1233 1916 1959

C11 -1.936 -0.903 0.004 -0.697 0.836 -99.888

C13 -2.731 -7.048 -0.242 -0.541 -0.170 -3.978

C22 -1.682 -1.635 -16.108 -3.294 -0.124 -0.083

C31 -1.387 -0.571 -0.527 -46.357 -1.701 -2.152

C42 -1.815 -3.978 -3.890 -0.286 -25.237 -3.511

C43 -2.036 -6.260 -8.375 -2.971 -63.705 5.768

Table 4: Frequency associated with the zeros of
Z101,13 and their sensitivities to cap. changes

Z1 Z2 Z3 Z4 Z5

f (Hz)→ 495 825 1221 1849 1938

C11 -0.659 -0.109 -1.981 -99.619 -3.721

C13 0.000 0.000 0.000 0.000 0.000

C22 -4.121 -14.941 -3.814 -0.242 0.004

C31 -2.588 -0.550 -44.867 -5.162 0.200

C42 -5.207 -4.578 -0.344 0.918 -29.679

C43 -6.786 -9.716 -3.307 -4.331 -53.585
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Figure 5: Poles of the industrial system and
Z101,13 zeros spectra

It is worth noting that the shapes of the impedance plot,
(Bode diagram) shown in Figure 4, may be sketched by
hand from the inspection of the associated pole-zero
spectra. One can observe, for instance, that the poles P3,
P4 and P5 are very close to the zeros Z2, Z3 and Z5,
respectively. This proximity cancels the effect of these



poles and zeros in the impedance plot. Actually, to
obtain this canceling effect, it would only be necessary
to have closer frequencies associated with these poles
and zeros (imaginary parts).

As one can see from Figure 4 and Figure 5 the pole
located at 640 Hz (pole P2) is the most responsible for
possible high distortions mainly at 11o and 13o harmonic
frequencies (660 Hz and 780 Hz, respectively). From
Table 3 it is possible to see that this pole has the highest
sensitivity with respect to changes in the capacitor C13.
On the other hand from Table 4 it is possible to see that
the zero located at 495 Hz (zero Z1) has null sensitivity
to this capacitor. This means that if this capacitor is
increased the frequency associated with P2 will decrease
(negative sensitivity) and may become closer to zero Z1,
being therefore partially canceled. In terms of the Bode
diagram shown in Figure 4 the second peak will be
shifted to the left and its amplitude will diminish. In fact
the first peak will also be shifted to the left since the
pole P1 has a negative sensitivity to this capacitor. The
poles of the industrial system and Z101,13 zeros spectra
and the impedance plot diagram for

FC µ= 48.4213 (which means an additional capacitance

of FC µ=∆ 0.2013 ) are shown in Figure 6 and Figure 7,

respectively. The original plots are superimposed for
easy comparison.
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Figure 6: Poles of the industrial system and Z101,13

zeros spectra for FC µ= 48.4213
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Figure 7: Transfer-impedance Z101,13 for FC µ= 48.4213

The new values of the frequencies associated with the
system poles are presented in Table 5 for

FC µ= 48.4213 . Since the sensitivities of the

frequencies associated with the Z101,13 zeros with respect
to changes in the capacitance C13 are all nulls (see
second row of Table 4) their values and their
sensitivities remain the same.

Table 5: Frequency associated with the system
poles for FC µ= 48.4213

P1 P2 P3 P4 P5 P6

f (Hz)→ 288 564 827 1227 1895 1936

The voltage distortions for the original system and for
the proposed solution are listed in Table 6 as well as the
distortion limits [13] adopted in this paper. The voltage
distortions that exceed the maximum accepted limits are
highlighted.

Table 6: Harmonic voltage distortion
spectrum at bus 13

Harmonic
Order

Original
System (%)

Proposed
Solution (%)

Limits
(%)

11 9.15 2.78 3.5

13 4.33 1.65 3.0

23 0.662 0.350 1.5

25 0.563 0.309 1.5

7. Analysis of Option 2

The modulus of the transfer-impedance between the
buses 201 and 22 (Z201,22) is plotted in. The bus 22 was
chosen for the same reasons as before (see Section 6).
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Figure 8: Transfer-impedance Z201,22

The frequencies associated with the zeros of the
transfer-impedance Z201,22 and their sensitivities are
given in Table 7. The poles and their sensitivities do not
depend on the transfer function considered, being
already presented in Table 3. The poles of the industrial
system and Z201,22 zeros spectra is shown in Figure 9.



Table 7: Frequency associated with the zeros of
Z201,22 and their sensitivities to cap. changes

Z1 Z2 Z3 Z4 Z5

f (Hz)→ 450 670 1199 1914 1958

C11 -3.018 -0.269 -0.900 -0.700 -98.199

C13 -6.258 -3.683 -0.798 -0.257 -3.908

C22 0.000 0.000 0.000 0.000 0.000

C31 -1.063 -0.735 -47.545 -1.959 -2.180

C42 -1.892 -7.970 -0.552 -24.396 -4.303

C43 -2.227 -13.092 -4.552 -63.444 5.446
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Figure 9: Poles of the industrial system and
Z201,22 zeros spectra

As one can see from Figure 8 and Figure 9, the pole
located at 829 Hz (pole P3) contributes for possible high
distortions mainly at 11o and 13o harmonic frequencies
(660 Hz and 780 Hz, respectively). From Table 3 it is
possible to see that this pole has the highest sensitivity
to the capacitor C22. On the other hand from Table 7 it is
possible to see that the zero located at 670 Hz (zero Z2)
has null sensitivity to this capacitor. This means that if
this capacitor is increased the frequency associated with
P3 will decrease (negative sensitivity) and will become
closer to zero Z2, being therefore partially canceled. On
the other hand the pole P2, which is partially canceled by
the zero Z2, will move away from Z2 and its effect will
become more evident. Note in the Bode diagram of
Figure 8 that the peak associated with pole P3 will be
shifted to the left and its amplitude will be reduced. Also
the peak associated with pole P2 will be shifted to the
left but its amplitude will increase. The poles of the
industrial system and Z201,22 zeros spectra and the
impedance plot diagram for FC µ= 86.2622 (which

mean an additional capacitance of FC µ=∆ 0.1022 ) are

shown in Figure 10 and Figure 11, respectively. The
original plots are superimposed for easy comparison.
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Figure 10: Poles of the industrial system and Z201,22

zeros spectra for FC µ= 86.2622
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Figure 11: Transfer-impedance Z201,22

for FC µ= 86.2622

The new values of the frequencies associated with the
industrial system poles are presented in Table 8 for

FC µ= 86.2622 . Since the sensitivities of the

frequencies associated with the Z201,22 zeros to the
capacitance C22 are all nulls (see second row of Table 7)
their values and their sensitivities remain unaltered.

Table 8: Frequency associated with the poles and
their sensitivities to cap. changes for

FC µ= 86.2622

P1 P2 P3 P4 P5 P6

f (Hz)→ 321 616 729 1216 1915 1958

C11 -1.591 -1.284 -0.007 -0.808 0.312 -99.316

C13 -2.175 -7.587 -0.151 -0.668 -0.201 -3.955

C22 -1.677 -3.275 -5.358 -0.845 -0.044 -0.024

C31 -1.185 -0.240 -0.060 -47.422 -1.799 -2.172

C42 -1.505 -1.213 -6.941 -0.406 -24.920 -3.808

C43 -1.669 -1.789 -12.465 -3.737 -63.681 5.715

From Table 8 and Figure 10 it is possible to see that if
the capacitor C22 is increased again, the pole P3 can be
totally canceled by the zero Z2. Note from Table 7 that
the sensitivity of Z2 to C22 is null, thus it will stay still.
For similar reasoning its possible to conclude that the
pole P2 will become closer to zero Z1, being partially
canceled. In terms of Bode diagram show in Figure 11
the peak associated with pole P3 will vanish and the
peak associated with pole P2 will be shifted to the left



and its amplitude will be reduced. The impedance Bode
diagram for FC µ= 86.4622 (which means an additional

capacitance of FC µ=∆ 0.3022 ) is shown in Figure 12.

The original plots are superimposed for easy
comparison.
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Figure 12: Transfer-impedance Z201,22

for FC µ= 86.4622

The voltage distortions for the original system and for
the proposed solution are listed in Table 9.

Table 9: Harmonic voltage distortion
spectrum at bus 22

Harmonic
Order

Original
System (%)

Proposed
Solution (%)

Limits
(%)

11 5.20 2.89 3.5

13 7.48 1.85 3.0

23 1.40 0.368 1.5

25 1.18 0.330 1.5

In Figure 13 the final transfer-impedances Z101,13 and
Z201,22 are plotted together to show the equivalence of
the two solutions. The Option 1 is preferred since it
requires 10.0 µF less than the Option 2.
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Figure 13: Final transfer-impedances Z101,13 and Z201,22

8. Remarks

For Option 2 it is interesting to see what is the effect of
connecting the additional capacitance of 30µF at bus 26
(the closest 11.9 kV bus of the non-linear load) instead
of bus 22. The transfer impedances Z201,22 for both cases
are shown in Figure 14. The distortions at bus 22 for the
additional capacitance at bus 26 are listed in Table 10.

As one can see the additional capacitance connected at
bus 22 has reduced the distortions at high harmonic
frequency, acting therefore as a high-pass filter. On the
other hand, when connected at bus 26, has amplified
them. This simple example shows the importance of
investing on the development of methodologies to
effectively determine the optimum placing of new
equipment.
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Figure 14: Transfer-impedances Z201,22 for additional
capacitance at bus 22 and bus 26

Table 10: Harmonic voltage distortion spectrum at
bus 22 for additional capacitance at bus 26

Harmonic
Order

Original
System (%)

Proposed
Solution (%)

Limits
(%)

11 5.20 2.33 3.5

13 7.48 1.69 3.0

23 1.40 1.67 1.5

25 1.18 0.808 1.5

9. Conclusions

Some basic ideas about two network modeling
approaches were presented in this paper. The Y(s)
approach is considered to be a natural evolution of the
conventional Y(jω) approach. The Y(s) approach allows
obtaining all the results that can be obtained by the
Y(jω) approach. Additionally, the Y(s) approach allows
modal analysis to be performed. The descriptor system
approach can be used as a powerful complement of the
Y(s) approach since it allows the computation of the
complete set of system poles and transfer function zeros
at once.

The modal analysis gives important system dynamic
information that can be used to improve the harmonic
performance of a system. This was shown through the
simple example presented in this paper.

The practical use of modal analysis in power quality
problems is still in its infancy. Further work will try
using this technology to the optimum design of passive
filters.
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