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Abstract – A method to approximately shift the
electrical network poles and zeros to more suitable
locations in the complex plane was proposed in [1].
These shifts are made in order to improve the harmonic
voltage performance of a system. The method utilizes
eigenvalue sensitivity coefficients that are efficiently
obtained. The poles and/or zeros shifts are carried out
by changes in the system elements (e.g. capacitor and/or
reactor banks). As an improvement to the method
described in [1], this paper presents a Newton-Raphson
method to accurately carry out the required shifts.
Although the mathematical formulation considers just
one variable, it is possible to generalize the method to
consider several variables and also some constraints e.g.
maintenance of the system operating point. The main
aspects of the method are described together with some
results on a practical system problem.
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1. Introduction
The harmonic voltage performance of a system depends
on the location of its poles and zeros mainly with
respect to the typical harmonic frequencies [2], [3].
Based on this fact, the harmonic voltage performance
can be improved by shifting the electrical network poles
and zeros to more suitable locations in the complex
plane.

This paper presents a Newton-Raphson method that
accurately accomplishes these shifts. Though not dealt
with in this paper, it is possible to generalize the
described method to simultaneously shift several zeros
or poles, while imposing some important practical
constraints, like maintaining the same operating point
for the study system.

The methods present here and in [1] are based on the
use of the poles and zeros sensitivities to changes in
system parameters [1], [2], [3]. These sensitivities are
efficiently obtained by modeling the network through
the descriptor system approach [4], [5], [6] that has an
inherent ability to deal with state variable redundancies
(network degeneracy [7]). Additionally, it makes the
pole and zero sensitivity calculations [1] suitable for
practical application to large networks of any topology.

This paper presents a review of the descriptor system
approach applied to the study of harmonic problems, a
Newton-Raphson method to shift poles and zeros and
example results on a practical system.

2. Network Modeling
The dynamic behavior of an electrical network is
governed by: Kirchhoff’s current law (KCL),
Kirchhoff’s voltage law (KVL) and the equations
describing the inherent dynamic characteristics of each
network element [8].

The Kirchhoff’s laws (KCL and KVL) are algebraic
equations containing the information on system
topology. Each algebraic equation determines a linear
dependence among system variables (voltages and
currents). The dynamic characteristics of the inductive
and capacitive elements are described by first-order
differential equations, in terms of currents and voltages.
The inductive currents and capacitive voltages represent
the obvious choice of state variables.

However, building a dynamic model for a practical
electrical network, based on the conventional state-
space methodology may not be a simple task. By
definition, the states form a minimum set of variables
able to describe the dynamic behavior of a system [9].
Therefore, a minimum set of inductive currents and
capacitive voltages, which are linearly independent,



must be determined. The available techniques to
determine this minimum set of states involve an
elaborate topological analysis of the electrical circuit
[7].

This difficulty is, however, overcome when using the
descriptor system (or partially dynamic system) to
model the electrical network [4], [5], [6]. The network
modeling by the descriptor system technique assumes
that all the inductive currents and all capacitive voltages
are state variables. The algebraic constraints imposed by
the KCL are also included in the model.

3. Single-phase RLC Series Branch

Harmonic studies usually utilize positive-sequence
network models [10], [11], where only single-phase
representation is necessary. Three-phase modeling,
needed in some harmonic studies [11], [12], [13] could
also be considered by the proposed method [5].

The single-phase RLC branch depicted in Fig. 1 is
assumed to be the elementary network component.
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Fig. 1: RLC branch

The dynamic behavior of the RLC branch can be
described by a set of two differential equations:
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Equation (1) is general and holds for the particular
cases where L or R are zero. However, when there is no
capacitor in the branch, (2) must be replaced by:

0=Cv (3)

4. Descriptor System for Single-phase RLC
Networks

A given network can be represented for harmonic
studies by the interconnection of single-phase RLC
branches. For each element, (1) and (2) can be written in
matrix form:
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where the current kji  through the inductor and the

voltage Cv  across the capacitor are the chosen state

variables. Symbols kv  and jv  denote the voltages at

nodes k and j, respectively.

If there is no capacitor, (4) needs to be modified:
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Note that kji  in (4) is positive if the current flows

from node k to node j, i.e., a positive current injection at
j and negative at k. The interconnection among the
various network elements is modeled by a set of
equations describing the KCL applied to each system
node: the algebraic sum of all branch currents leaving a
node is zero at all instants of time. Therefore, the
current kji  is assumed positive in the equation for the

currents associated with the j-th node and assumed
negative in the equation associated with the k-th node. If
a given branch is connected to ground )0or  0( == kj ,

the current through this branch will only be present in
one equation.

The electric network model contains two differential
equations for each existing RLC branch and one
algebraic equation (the KCL) per system node. After
interconnecting the equations for all RLC branches, the
following descriptor system equation is obtained:
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1T  is a diagonal matrix and 1A  block-diagonal; 2A

and 3A  are “incidence matrices” for the descriptor

system. Symbols 0 and q0  denote null matrices and I is

the identity matrix. The superscript T denotes matrix
transposition and a dot over a vector its time derivative.

The matrix equations (6) and (7) can be written in
compact form:

uBxAxT    +=! (8)

xCy  = (9)

where:
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Let ln  be the number of RLC branches and nn  the

number of network nodes. The various matrix and
vector dimensions are listed in Table 1.



Table 1: Matrix and vector dimensions

Symbol Dimensions

A1, T1 ll nn 22 ×

A2, 0 nl nn ×2

A3 ln nn 2×

I, 0q nn nn ×

A, T ( ) ( )nlnl nnnn +×+ 22

B ( ) nnl nnn ×+2

Matrices

C ( )nln nnn +× 2

x1 ln2

vnodal, inodal, u, y nnVectors

x nl nn +2

5. Harmonic Impedance seen from a System Node

Applying the Laplace Transform to (8) and (9):

( ) ( ) ( )sss uBATx    1−−= (17)

( ) ( )ss xCy  = (18)

where ( )sx , ( )su  and ( )sy  are the Laplace transforms

of x, u and y, respectively.

From the above two equations:

( ) ( ) ( )sss uBATCy    1−−= (19)

The impedance matrix ( )sZ  can be defined from

(19):

( ) ( ) BATCZ 1  −−= ss (20)

The self-impedance seen from node k is given by the

kkz  element of the ( )sZ  matrix. However, from (20)

and (10) to (13), one concludes that the kkz  element is

equal to the ( )knl +2  diagonal element of ( ) 1 −− ATs .

Thus:
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The inverse of ( )AT − s  is given by:
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Let kT  and kA  be the matrices obtained by

canceling the knl +2  row and column of the matrices T

and A, respectively. Thus, the knl +2  diagonal element

of ( ) 1 −− ATs  is given by:

( ) ( )[ ] ( )
( )
( )AT

AT
AT

−
−=−= +

−

 det

 det
   diag 2

1

s

s
ssz kk

knkk l
(23)

Equation (23) applies for descriptor systems, being a
generalization of [2], [3] developed for conventional
state space systems. It shows that:

The system poles are the generalized eigenvalues [14]
of the matrix pair { }TA  , :

( ) iiis vTvAAT    0 det λ=⇔=− (24)

The zeros, associated with the self-impedance of node
k, are the generalized eigenvalues of the matrix pair
{ }kk TA  , :

( ) ikiikkks vTvAAT ′λ′=′⇔=−    0 det (25)

where iλ  and iλ ′  are the generalized eigenvalues

associated with the pairs { }TA  ,  and { }kk TA  ,  and

iv and iv ′  are their associated generalized eigenvectors.

6. Test System

The test system is shown in Fig. 2, and has previously
been utilized in [3]. This system can be modeled by the
interconnection of several series RLC branches, as
shown in Fig. 3.

The system frequency is 50 Hz and the values of its
elements are given in Table 2. 12L  and 12R  represent

the inductance and resistance of the equivalent series
association of the line LT 1-2 with the transformer T2.
Similarly, 13L  and 13R  represent the inductance and

resistance of the equivalent series association of the line
LT 1-3 with the transformer T3. The impedance loads

2Z  and 3Z  are modeled as shunt reactors ( 2L  and 3L )

in parallel with shunt resistors ( 2R  and 3R ).

bus 1

bus 2 bus 3
T3 (MV/LV)T2 (MV/LV)

T1 (HV/MV)

TL 1-2 TL 1-3

H V  S y s t e m
Equivalent

Vth

Lcc

Ih2 Z2
C2 Z3 C3

C1

Ih3

Ih1

Fig. 2: Test System
Vth : Thévenin voltage.

Lcc : Short-circuit inductance of the HV system.

T1 : HV/MV transformer.

T2, T3 : MV/LV Transformers.

LT 1-2 : Transmission line connecting bus 1 to
transformer T2.

LT 1-3 : Transmission line connecting bus 2 to
transformer T3.

C1, C2, C3 : Capacitor banks connected to buses 1, 2 and 3,
respectively.

Z2, Z3 : Load impedances connected to buses 2 and 3,
respectively.

Ih1, Ih2, Ih3 : Harmonic current sources connected to buses
1, 2 and 3, respectively.
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Fig. 3: System modeling

Table 2: System parameter values
Inductance (mH) Resistance (Ω) Capacitance (µF)

ccL 8.0 2R 80.0 1C 23.9

2L 424.0 3R 133.0 2C 8.0

3L 531.0 12R 0.46 3C 11.9

12L 9.7 13R 0.55

13L 11.9

For the test system, the order of matrices A and T is
23. The sparse structure of the generalized state matrix
(A) is depicted in Fig. 4.

The constant nz represents the number of nonzero
elements, and is shown at the bottom of Fig. 4.
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Fig. 4: Sparse structure of matrix A for the Test System

6.1 Calculation of Poles, Zeros and Sensitivities

Although the order of the matrices A and T is 23, the
test system is actually of eighth-order. Therefore, 15
generalized eigenvalues of infinite moduli
corresponding to the algebraic equations are obtained.

Matrices kA  and kT  have order 22. They also have

15 generalized eigenvalues of infinite moduli and 7 of
finite module. The values of the finite generalized
eigenvalues associated to matrices { }TA  ,  (poles) and to

matrices  { }3,2,1 , , =kkk TA   (zeros), are shown in

Table 3.

Table 3: Generalized eigenvalues

{ }TA  , { }11  , TA { }22  , TA { }33  , TA

-345.9
± j4535.6

-338.5
± j2670.9

-93.7
± j3975.6

-398.4
± j4424.9

-507.0
± j3069.1

-804.4
± j3550.6

-255.5
± j2084.9

-415.3
± j2402.1

-290.1
± j1583.6

-1.0 -26.2 -27.8

-1.0 -1.1 -1.0 -1.0

-1.0 0.0 0.0 0.0

The frequencies (imaginary parts divided by 2 π) of
the complex conjugate network poles (parallel
resonance) and zeros of the self-impedances of the three
buses (series resonance), as well as their sensitivities
(see [1], [2] and [3]) with respect to the inductances and
capacitances of the Test System are presented in Table
4. The sensitivities are normalized, being given in
Hz/per unit change of the nominal parameter value.

Table 4: Resonance frequencies and sensitivities

System poles Zeros seen from

Bus 1 Bus 2 Bus 3

1 2 3 1 2 1 2 1 2

f(Hz) 252 489 722 425 565 332 633 382 704

ccL -101 -11 -50 0 0 -48 -80 -88 -47

2L -3 -4 -2 0 -7 0 0 -5 -2

3L -4 -2 0 -5 0 -5 -1 0 0

12L -2 -78 -247 0 -290 -40 -66 -37 -289

13L -19 -151 -78 -211 0 -75 -172 -59 -32

1C -45 -12 -206 0 0 -38 -242 -85 -189

2C -25 -116 -111 0 -269 0 0 -109 -145

3C -54 -114 -28 -210 0 -127 -72 0 0

7. A Newton-Raphson Method for Shifting Poles
and Zeros

7.1 Mathematical Formulation

Let f be the frequency value in Hz (imaginary part
divided by π 2 ) of a chosen pole or zero of a system;

rf  the target value for f (in other words, f should

become equal to rf  at the solution) and p the value of a

system parameter that is assumed to vary. One may
define:

( )pff = (26)
The mismatch function of the frequency of the

selected pole or zero can be defined by:

( ) ( )
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This equation must be satisfied at the solution:

0=g (28)
Applying the Newton-Raphson method to (28), one

obtains the following recurrence formula
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where the index k denotes the iteration number. The

parameter estimate 1+kp  tends to the solution rp , at

convergence.

The derivative of g with respect to p is given by:
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The values of 
( )

dp

pdf
 correspond to the imaginary

part (divided by π 2 ) of the eigenvalue sensitivity,
directly obtained from (see [1]):
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where v and w are the right (column) and the left (row)
generalized eigenvectors of { }TA  ,  associated with the

generalized eigenvalue fj   2 π+σ=λ , and vTw   =k .

7.2 Results

As shown in Table 4, the pole located at 252 Hz is
denoted by pole 1. It can cause problems at any system
bus since an injection of fifth-harmonic current can
generate high levels of harmonic distortions. Consider
that a 5th harmonic source exists in bus 2, and that
harmonic voltage distortion is excessive.

A possible solution to this problem consists in
bringing the zero 1 seen from bus 2 to the frequency of
250 Hz.

The highlighted column of sensitivity results in Table
4 indicate that changes in parameter 3C  will cause the

largest shifts in the chosen zero.

Applying the Newton-Raphson algorithm in (29), the
solution to this problem ( FC µ=   38.233 ) was obtained

in 4 iterations with an absolute mismatch function value
less than 0.1 %. Further iterations reveal the method
possesses quadratic convergence, which is typical of the
Newton-Raphson method.

The impedance moduli seen from bus 2 associated
with the original and the new value of 3C  are shown in

Fig. 5. This new value of 3C  causes a reduction of 70%

in the impedance magnitude at 250 Hz, yielding much
less voltage distortion.

The poles and zeros loci, as seen from bus 2, as the
parameter 3C  varies from 11.9 to 23.38 µF is depicted

in Fig. 6. Note that only the poles and zeros with non-
zero imaginary parts were plotted in this figure.

The frequencies of the poles and zeros, for the
converged value of 3C , are presented in Table 5. Note

that the poles 1 and 2 experienced the largest shifts
following the change in parameter 3C , a result that

could be anticipated from the sensitivities shown in

Table 4. Fig. 5 shows that there is an impedance
magnitude rise around the frequency of pole 2, since its
damping factor reduces as 3C  is varied. The damping

reduction experienced by pole 1 was compensated by an
approximately similar shift of zero 1, so that the
impedance seen from bus 2 actually shows a smaller
magnitude at about 200 Hz. These conclusions are
supported by the root locus plot (for poles and zeros)
shown in Fig. 6.

Table 5: New frequencies of poles and zeros

Zeros
Poles

Bus 1 Bus 2 Bus 3

1 2 3 1 2 1 2 1 2

f(Hz) 208 431 711 304 565 250 601 382 704
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Fig. 5: Impedance modulus seen from bus 2
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Fig. 6: Root locus for poles and zeros when varying 3C

Note that the numbers appearing beside the several
root-locus branches in Fig. 6 identify the system poles
and the zeros seen from bus 2, and are in accordance
with tables 4 and 5.

8. Conclusion

The traditional method for harmonic analysis is based
on nodal admittance matrices computed at various
discrete values of frequency within the range of interest.

The more recent state space [2], [3] and descriptor
system [1], [5], [6] methods allow obtaining all the
results produced by the traditional method for linear
models. Furthermore, these methods allow:

•  Identification of the elements mostly associated
with specific resonances.



•  Determination of the necessary changes in system
elements in order to shift the location of poles
and/or zeros to desired positions.

•  Optimum allocation of capacitor banks and/or
passive filters.

The conventional state space method [2], [3] has,
however, some limitations regarding its ability to model
practical networks. The descriptor system method [1],
[5], [6] overcomes these limitations and has others
advantages:

•  Simple and efficient computational implementation.

•  Ability to model systems of any topology and
containing state variable redundancies.

•  Applicability to large-scale networks, due to the
very sparse matrices involved and the availability
of powerful sparse eigensolution algorithms applied
to descriptor systems [5], [15], [16].

This paper describes, for the first time, a Newton-
Raphson method that accurately shifts poles and zeros
to more suitable locations, by varying
inductances / capacitances in system reactive
compensation banks or passive harmonic filters.
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