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Abstract: This paper investigates two controller struc-
tures suitable for damping power swings in multi-
machine power systems. The structures consist of
a decentralized controller design involving two power
system stabilizers and a controller design using a re-
mote signal and only one power system stabilizer. We
provide an analysis of the decentralized control design,
which motivates the input signal synthesis using the
remote signal. The impact of communication delays
in using the remote signal is investigated. The de-
sign is illustrated using a 5-machine equivalent of the
South/Southeast Brazilian system, which has an open-
loop unstable intearea mode and cannot be stabilized
using only one conventional power system stabilizer
and local measurements as input signals.
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I. INTRODUCTION

In an interconnected power system, oscillatory
modes can be local, affecting only a few machines, or
global, affecting machines over a wide area. Stability
and damping control designs involving many machines
have to impose a hierarchical structure in order to be
effective, reliable, and robust [1]. A control designer
must weigh the merits of various controller structures
such as centralized and decentralized designs, as well
as the use of any remote signals.

In this paper, we investigate two controller struc-
tures for the design of power system stabilizers (PSS)
in a small equivalent Brazilian system. The controller

designs include a decentralized controller structure of
two PSS’s using only local signals, and a single PSS de-
sign using an input signal synthesized from a remote
speed signal. Discussions on a centralized structure
design of a two-input, two-output controller can be
found in [2] and will not be repeated here.

The test system is a modified 7-bus, 5-machine
equivalent model of the South/Southeast Brazilian
system first presented in [3] and depicted in Figure 1.
The complete system data can be obtained from [3].
This system is selected because it cannot be stabilized
with a single conventional PSS. However, it can be sta-
bilized by using two PSSs [3], [2]. In the decentralized
controller structure using two PSS’s, we compare the
applicability of a classical design approach using the
root-locus technique and of a linear matrix inequal-
ity (LMI) design approach. Then we provide a “zero-
locus” analysis to explain how the application of one
PSS aids the second PSS in stabilizing the unstable
interarea mode.

In the second controller structure, we investigate the
use of a remote signal to stabilize the system using only
one PSS. A remote speed measurement is combined
with a local speed signal using a zero-locus analysis
to synthesize an appropriate input signal to the PSS.
Because using a remote signal incurs time delays, two
different schemes in synthesizing the PSS input signal
are investigated. In addition, the robustness of using
the remote signal in enhancing the damping of the
swing modes is examined.

The paper is organized as follows. Section II pro-
vides a discussion of the 5-machine Brazilian system.
Section IIT contains the decentralized controller de-



signs. Section IV investigates the alternative control
structure using a remote signal and the robustness of
the design.

II. TEST SYSTEM

The modal analysis of the small Brazilian test sys-
tem indicates that there are two interarea modes.
Mode 1 is due to the Southeast (SE) equivalent system
oscillating against the Itaipu generator, while Mode 2
is due to the South system (represented by Santiago,
Segredo and Areia) oscillating against the Southeast
system together with the Itaipu generator. The sys-
tem also has two local modes of oscillations within the
South system: Mode 3 consisting of Areia and Segredo
oscillating against Santiago, and Mode 4 consisting of
Areia oscillating against Segredo.

Table I presents five operating scenarios, obtained
from the same transmission network configuration,
where the values of the reactances X5 ¢ and Xg 7
(connecting Buses 5-6 and Buses 6-7, respectively) are
varied [3]. The generator and load levels are the same
for all 5 scenarios. Table I also shows the frequencies
and the damping ratios of Modes 1 and 2. In all op-
erating scenarios, Mode 1 is open-loop unstable. The
local modes (Mode 3 and Mode 4) have damping ra-
tios of about 20% and oscillation frequencies of about
1.46 Hz.

TABLE I
OPEN-LOOP OPERATING CONDITIONS

Case | X5_6 | Xe—7 Mode 1 Mode 2
# pu pu_ | f(Hz) (%) | f(Hz) ¢(%)
1 0.39 0.57 0.86 -11.9 0.94 3.8
2 0.50 0.57 0.86 -12.1 0.92 3.5
3 0.80 0.57 0.85 -12.7 0.88 2.8
4 0.39 0.63 0.84 -13.7 0.93 4.0
5 0.39 0.70 0.80 -16.6 0.93 4.2

Of the five operating scenarios, we choose Case 3 as
the nominal design conditioon. In addition, we inves-
tigate the control design using only the Segredo and
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Fig. 2. Pole-Zero Plot of 2-input, 2-output System

Itaipu machines. The linearized system model is de-
scribed by the two-input, two-output (TITO) state-
space model

T Az 4+ Bu (1a)
y = Czx (1b)
Y = [YSegredo yItaipu]T (1c)
u = [usegredo Ultaipu]” (1d)
B = [B; By (1e)
¢ = [cf G)F (1f)

where the control signal u is the input to the Segredo
and Itaipu AVR’s and the measurements y are the ma-
chine rotor speeds. Figure 2 shows the multivariable
pole-zero locations for the 2 x 2 transfer function. Note
that the system is unstable with an interarea mode in
the RHP (right half-plane), which is Mode 1 in Table I.
However, all the zeros are in the LHP (left half-plane),
allowing stabilization by applying conventional PSS’s
at Segredo and Itaipu.

As a comparison, we decompose the TITO system
(1) into four transfer functions and compute the poles
and zeros of each transfer function individually as
single-input, single-output (SISO) subsystems. Figure
3(a) is the pole-zero plot of the transfer function from
the Segredo input to the Segredo machine speed, which
shows a RHP zero very close to the unstable pole. As a
result, stability cannot be achieved by applying a con-
ventional PSS to the Segredo machine only. Similarly,
Figure 3(d) is the pole-zero plot of the transfer func-
tion from the Itaipu input to the Itaipu machine speed,
which shows a RHP zero close to the jw axis. This sys-
tem still cannot be stabilized with a conventional PSS
applied to the Itaipu machine only. Figures 3(b) and
3(c) show the pole-zero plots of the off-diagonal trans-
fer function terms, namely, from the Itaipu input to
the Segredo speed and from the Segredo input to the
Ttaipu speed. These plots show that the RHP zero is
still present in these two transfer functions, and thus
these transfer functions individually cannot be stabi-



lized using conventional PSSs.

Most recently, several power equipment manufac-
turers are marketing dual-input PSS’s, which use the
machine speed and electrical output power to synthe-
size an accelerating power variable P,c. [4]. One of
the advantages of a dual-input PSS is that it reduces
the interaction of the PSS with the excitation system
mode and thus allows a higher gain to be used for im-
proved damping. When the synthesized accelerating
power variables of Segredo and Itaipu are used as the
output, the main features of the pole-zero plots of the
2 x 2 transfer function and the individual SISO trans-
fer functions are similar to those shown in Figures 2
and 3, and hence, the plots are omitted here. Thus
using the synthesized accelerating power variable still
would not allow the stabilization of the system using
only a single PSS.

III. DECENTRALIZED CONTROL DESIGN

In this section we describe the procedures used for
designing the decentralized PSS controllers. We first
overview the design methods and present the design
results. Then we provide an analysis to explain the
mechanism allowing two decentralized PSS’s to stabi-
lize the system.

A. Classical Design

In the classical design, a double-lead compensator is
applied individually to each of the Segredo and Itaipu
generators’ excitation systems. Each compensator is
designed individually with the second compensator
loop remaining open, and with the objective of pro-
viding maximum damping benefits to Modes 1 and 2
for all 5 operating conditions. Note that this is an un-
coordinated design and that neither compensator can
achieve stability by itself due to the presence of the
RHP zeros in the open-loop transfer function of both
compensators. Stability is achieved however, when
both compensators are applied simultaneously. The
designed compensators, including a washout stage,
have the following transfer functions:

Segredo PSS

~ 35 (1+0.3s)(1 +0.15)
PSSs(s) =30 1 35 (1+0.025)(1 + 0.0085) @)
Itaipu PSS
1 . 1 .
PSS4(s) = 60 x 35 (1+0.35)(1 +0.35) (3)

X
1+3s  (1+0.03s)(1+ 0.03s)

The combination of these two PSS’s provides satisfac-
torily damping to Mode 1 ranging from 7.2% to 10.6%
(Table II) for all 5 operating conditions. Modes 2 has
at least 50% damping. However, as common in the
classical design, the PSS’s interact with the machine
dynamics and excitation systems to produce a lightly
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damped control mode (mode x in Table II). This clas-
sical design will be referred to as Design C. The fre-
quency responses of these PSS’s without the washout
stages are shown in Figures 4 and 5.

B. LMI Design

The Linear Matrix Inequality approach presented in
[8], [9] is used to design a low-order decentralized con-
troller. In an earlier paper [8], the technique was used
to design a PSS to stabilize a single-machine infinite-
bus system at 5 operating scenarios. Here we are ex-
tending the results to a two-PSS design.

It is well-known that the LMI approach can solve
robust control design problems with constraints such
as regional pole-placement [10] through a convex op-
timization algorithm [11]. However, the controller ob-
tained is of full order, that is, the same size as the
design model including weighting functions. When
the design problem is formulated for a low-order con-
troller, the resulting optimization is non-convex [12].
To circumvent the non-convexity, the low-order con-
troller LMI approach in [8] uses coprime factorization.
The coprime factors allow the control design to be for-
mulated as an approximate pole-placement problem
of minimizing the H,, norm of a stable transfer func-
tion. The minimization can be extended to include
more than one operating condition. The stability of
the closed-loop system can be guaranteed by impos-
ing a positive realness condition. This LMI approach
can readily handle decentralized control by simply en-
forcing the gains in the off-diagonal entries of the con-
troller to be zero in the convex optimization.

The decentralized controller obtained by adjusting
the weights from the LMI design is

Segredo PSS

3s s2+11.35+ 67

PSSy (s) = 61
S83(s) = 6155 X 1= X 7657 (s + 230)

(4)
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Ttaipu PSS

3s y (s +2.5)(s+8.2)

P =
SS4(8) 7677 X 1+ 3s 52 + 94.4s + 2759

()

Although not having only real poles and zeros as in
conventional PSS, these PSS’s are phase-lead compen-
sators. The decentralized LMI controller is denoted as
Design LD. Note that an iterative LMI algorithm is
used in [13] to design the decentralized PSS’s. How-
ever, the non-iterative method used here and in [8] is
more efficient.

Table II shows that Design LD achieves better
damping than Design C for all 5 operating conditions.
In particular, the control mode is well damped. The
frequency responses of these two controllers are shown
in Figures 4 and 5. Note that although the frequency
responses of Design C and LD are quite similar, their
effects on the closed-loop system poles are quite dif-
ferent.

C. Further Discussion on the Decentralized Design

To explain how the decentralized controllers stabi-
lize the test system, we first close one loop of the TITO
system using the Segredo machine PSS (2). The pole-
zero loci plot of the Itaipu loop is obtained by varying
the PSS gain of (2) from 0 to 7000 (see Figure 6). As
the gain increases , Mode 2 (A) moves toward left,
pulling the RHP zero (B) to the LHP between Modes
1 (A) and 2 (C). When this RHP zero moves into the
LHP, we can readily design a controller to stablize the
test system.

Similarly, if we close the loop on the Itaipu machine
using the PSS (3), the resulting pole-zero loci plot of
the Segredo loop is obtained by varying the PSS gain
from 0 to 7000 as shown in Figure 7. Note that the
RHP zero (D) is also pulled into the LHP when the
gain increases. Thus a stablizing PSS for Segredo can
be readily designed.



TABLE II
CLOSED-LOOP SYSTEM DAMPING RATIO (%)

Case Design C Design LD Design R Design RD
7# Model Modex | Model Mode2 | Model Mode2 Mode3 | Model Mode2 Mode3
1 10.6 9.5 15.5 14.2 13.8 9.08 10.7 5.24 4.83 4.96
2 10.0 9.7 14.7 14.2 13.5 9.26 10.8 4.67 5.11 4.69
3 8.8 9.9 13.0 14.1 11.5 11.4 10.6 4.85 5.43 4.97
4 9.3 9.8 13.4 14.2 11.7 7.19 10.3 4.38 4.17 4.06
5 7.2 10.4 10.2 14.2 13.3 6.15 10.1 3.63 3.25 3.49
mode x — mode due to PSS interaction with excitation system.
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IV. ALTERNATIVE STRUCTURE USING REMOTE
SIGNAL

In this section, we investigate an alternative con-
troller structure that would allow the stabilization of
the system with a single PSS. This strategy will be
useful in enhancing the security of the system if the
Segredo PSS from the decentralized controller design
is not available due to outage. Because the actua-
tors are fixed by their locations, the solution becomes
a selection of alternative feedback signals. Controller
input-signal designs had been investigated in [5] for
SVC and in [6] for TCSC. Here we pursue a similar
design strategy by synthesizing a signal whose trans-
fer function will have more desirable zeros.

Based on the coherency concept [7], we propose to
add the Segredo speed variable to the Itaipu speed
variable with a weighting factor a to create a signal
that is rich in the unstable mode (Mode 1) and yet
has desirable sensitivities to add damping to Mode 2.
The resulting system is

T = A.Z‘ + B2u1taipu
Yltaipu = [CZ + aCl]w = YItaipu T QYSegredo

To determine an optimal value of «, we plot the ze-
ros of the system for values of a ranging from 0 to 1
as shown in Figure 8. Note that for this single-input,
single-output system, Figure 8 traces out the zero loci,
showing the RHP zero at @ = 0 moving into the LHP.
On the other hand, a zero at & = 0 in the LHP even-
tually moves into the RHP. To achieve a good design,
we need the two zeros to be in the LHP with roughly
the same real part. As a result, we set a = 0.5. Fig-
ure 9 shows the open-loop pole-zero locations of this
system, which has no RHP zeros.

For this SISO system, we use a conventional double-
lead-lag compensator structure for the controller.
Here we use the LMI [8] to design the compensator.
To achieve the desired damping, we need to optimize
the design for each of the 5 operating conditions. For
example, for Case 3, the compensator, including a
washout stage, has the transfer function

3s N (s +98.8)(s+0.2)

(7)
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Figure 10 is the root-locus plot of the system. This
controller is denoted as Design R. Table II shows the
damping of the swing modes of the feedback system
for all 5 operating conditions, each using a different
controller. Note that controllers are able to provide
damping to both Modes 1 and 2, although the damp-
ing of Mode 3 has been reduced somewhat. The min-
imum damping is 6.15% for Mode 2. The frequency
response of this controller without the washout stage
is shown in Figure 11.

It is not unexpected that the control design with
the remote signal is not as robust as the decentralized
design. To implement this control scheme with 5 dif-
ferent controllers, it is required that the controller also
monitors the system operating condition.

Although we can move the RHP zero to the LHP
using the Itaipu controller, we cannot do so using the
Segredo controller. The system model for the Segredo
controller is

&= Az + BlUSegredo (Sa)
ySegredO = [Cl + ﬂc2]$ = YSegredo T ﬂyltaipu (Sb)
Figure 12 shows the zero loci when 8 changes form 0

to 1. The RHP zero moves only slightly and remains in
the RHP. The reason is that the Segredo AVR input
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Ultaipu 10 controlling Mode 1.

When a remote signal is used for control, a proper
design should take into account the potential delay in
processing and receiving the remote signal. We now
investigate the suitability of these two schemes to deal
with the delay T.

In the first scheme, we simply add the delayed re-
mote Segredo signal ysegredo to the local signal yitaipu
to form the synthesized signal ¥y, as in (6b). A
representation of this scheme is shown in Figure 13.
Note that the delay is modeled by a first-order Padé
approximation [14].

USegredol YSegredo 1*%8 a
Power 179
System
Ultai : _
Itaipu Yltaipu yltaipu

Fig. 13. Synthesized Signal with Delayed Remote Signal

Figure 14 shows the zero loci of this system as «
and T change. For T' = 0.1 sec., the zero-locus branch
originating from the RHP zero does not move far away
from the jw-axis. When T > 0.2 sec., that zero-locus
branch does not move into the LHP at all, making it
not stabilizable by a conventional PSS.
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In the second scheme, we add to yrtaipy the same
delay as yYsegredo- Thus the synthesized signal can be
modeled as shown in Figure 15, where both signals
have the same delay, represented again by a first-order
Padé approximation. The zero-locus plot of this sys-
tem is identical to the one shown in Figure 8 and is
independent of the delay. Comparing Figures 8 and 9,
it seems that the synthesized signal scheme in Figure
14 would result in an easier design problem, because
the RHP zero can be moved further into the LHP.

For the scheme in Figure 15, we propose to design a
second-order PSS. With the delay, we anticipate that
a larger amount of phase lead will be required. We
perform the control design using the LMI method, as-
suming 7" = 0.1 sec. (about 5-6 cycles depending on
the system frequency), which is probably a conserva-
tive estimate. Again, each of the 5 operating condi-
tions requires a separate control design. For Case 3,
the controller transfer function is

35(s + 0.3844) (s + 1.144)
(3s +1)(s2 4+ 155 + 139.1)

Kdelay(s) =358 x

Figure 16 shows the root-locus plot of the Case 3
system. Note that Mode 3 tends to move more rapidly
toward the RHP, due to the effect of the RHP zero
from the Padé approximation.

This design will be referred to as Design RD. Ta-
ble IT shows the damping of the swing modes of the
feedback systems for all 5 operating conditions, having
a minimum of 3.25% damping. Figure 11 shows that
the maximum phase lead of this controller is almost
50 degrees larger than that of Design R. Although the
damping is low, the controller is still useful as a backup

‘yItaipu
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Fig. 16. Root-Locus Design for Delayed Signal

controller in case the Segredo PSS has to go offline.
We expect the minimum damping to be higher if T is
smaller.

V. CONCLUSION

In this paper, we show several control design
schemes useful for damping of swing modes in a
multiple-input, multiple-output system. We discuss
the design of decentralized controllers. In addition, we
explore the possibilities of stabilizing the system with
only s single controller. This implementation requires
the use of a remote signal to enhance the control flexi-
bility. Such a study is important in improving reliabil-
ity in a de-regulated power system, where alternative
controller structures can be used for stabilization or as
backup to the primary control function.
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