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Abstract| This paper presents a systematic
procedure based on Linear Matrix Inequalities
(LMI) for the simultaneous tuning of multiple
power system damping controllers. The method
directly solves for a low-order controller which
satis�es a frequency-domain robustness bound.
The design formulation involves a nonconvex op-
timization problem, which is solved iteratively
considering a set of linear matrix inequalities as
design constraints. Controller constraints such
as decentralization and positive realness (all ze-
ros in the left half-plane) can also be included
in the design. The paper illustrates the method
with an application to the design of two damp-
ing controllers for a small-scale system which
keeps some dynamic characteristics of the South-
Southeast Brazilian System.
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I. Introduction

T
HE purpose of this paper is to demonstrate
the use of an iterative LMI-based optimiza-

tion method to simultaneously design multiple low-
order power system damping controllers. The
method will be applied to the design of multiple
power system stabilizers in a 7-bus equivalent of
the power system model used in the initial plan-
ning studies of the Itaipu generation and AC trans-
mission complex. The system shows two lightly
damped inter-area modes that cannot be simulta-
neously controlled with a single PSS. This is a sit-
uation where controller coordination to avoid ad-
verse interactions must be carefully analyzed.

The method utilized in this paper belongs to a
class ofH1 optimization techniques. Recently, sev-
eral papers have discussed the use ofH1 techniques
to design robust power swing damping controllers
[1], [2], [3]. It is shown that if the design is formu-
lated as a mixed sensitivity or a model-matching
problem using appropriate frequency weighting
functions, the controller can be readily solved using
available design packages. However, in the stan-
dard H1 problem, a designer cannot directly im-
pose constraints on the controller. For example, the
order of the controller has to be equal to the system
order plus the order of the weighting functions, and
thus it may be much higher than desired or needed.
The controller may also have lightly damped poles
and may even be non-minimum phase. In applica-
tions involving several control channels, as in power
systems, it may be desirable to use a decentralized
control structure.
The design method used in this paper will allow

the designer to �x the order of the controller and
impose appropriate constraints on its structure. It
requires the control designer to select the controller
order and the controller poles, based on design con-
siderations such as controller bandwidth. For de-
sign problems with controller structural constraints
such as �xed-order controller, it is well known that
the design equation involves a bia�ne matrix in-
equality (BMI) which is a non-convex programming
problem and cannot be solved in polynomial time.
In the proposed method, the BMI problem arising
from a controller parameterization is formulated as
a dual design which is solved as recursive sets of
LMIs. Although the method does not have global
convergence properties, it converges quite well to
local minima.
The proposed method has been applied to de-



centralized control design when the interactions be-
tween the controllers are low. In the 7-bus system
of this paper, it is anticipated that the control de-
sign including strong interactions between the con-
trollers, would be a more challenging design prob-
lem.

II. Low-Order H
1
Controller Design

Consider the linear time-invariant generalized
plant G(s) with the state-space realization

_xg = Agxg + Bg1w +Bg2u

z = Cg1xg +Dg12u (1)

yg = Cg2xg

where xg is the n-dimensional state variable vec-
tor, w is the m1-dimensional disturbance and other
external input vector, z is the p1-dimensional con-
trolled output vector, u is the m2-dimensional con-
trolled input vector, and yg is the p2-dimensional
measured output vector.
The low-order H1 controller design problem is

to �nd a control u = K(s)y, as shown in Figure 1,
such that the closed-loop transfer function from w
to z, denoted as Tzw(s), is stable and its H1 norm
satis�es
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Fig. 1. Low-Order H1 Controller Design

k Tzw(s) k1< 
 (2)

where 
 > 0 is a pre-speci�ed constant, and K(s)
has the state-space realization

_xk = Akxk + Bkyg

u = Ckxk +Dkyg (3)

where xk is the nc-dimensional control vector, and
the controller order nc is speci�ed as nc < n.
We will consider the special case of a low-order

controller design in which the poles of the controller
are already known. In many control systems, a
designer may be able to specify the poles of the
controller quite readily, usually based on the con-
trol bandwidth speci�cations. With the poles �xed,
only the gains and the zeros of the low-order con-
troller need to be optimized. In this case, we put
the pair (Ak; Bk) in the controller canonical form
([8], p. 50), with the eigenvalues of Ak being the

desired poles. Then the low-order controller design
for the generalized system (1) can be reformulated
as an H1 static output-feedback control problem
of �nding

u =
h
Ck Dk

i
y (4)

for the generalized system

_x = Ax+ B1w +B2u

z = C1x+D12u (5)

y = C2x

where

x =

"
xk
xg

#
; y =

"
xk
yg

#
; A =

"
Ak BkCg2

0 Ag

#

(6)

B1 =

"
0
Bg1

#
; B2 =

"
0
Bg2

#
(7)

C1 =
h
0 Cg1

i
; C2 =

"
Inc 0
0 Cg2

#
; D12 = Dg12

(8)
such that the closed-loop system is stable and the
transfer function Tzw from w to z satis�es (2).
For convenience we assume that Cg2 is of full row

rank and has the form

Cg2 =
h
Ip2 0

i
(9)

If this is not the case, we can perform a state trans-
formation on xg such that (9) has the desired form.
The output feedback control (4) then becomes

u =
h
Ck Dk

i " Inc 0 0
0 Ip2 0

#
x

=
h
Ck Dk 0

i
x = Fd x (10)

where Fd =
h
Ck Dk 0

i
is a structurally con-

strained state-feedback gain matrix whose last n�
p2 columns are identically zero.
The H

1
structurally constrained feedback con-

trol problem of �nding (10) for the generalized sys-
tem (5) to satisfy (2) is a non-convex programming
problem. There is no known closed-form solution to
the problem. We approach this problem by formu-
lating a dual design problem, resulting in an opti-
mization problem with quadratic matrix inequality
(QMI) constraints. The QMI optimization problem
can then be solved iteratively as an LMI problem.
Our approach is summarized in Theorems 1 and 2,
described below.
We assume that the generalized system (5) sat-

is�es the following assumptions:



(A1) System (5) is stabilizable under the control
structure (10).

(A2)

"
A� j!I B2

C1 D12

#
has full column rank for

all !.
(A3) D12 is of full column rank.
Theorem 1: [6] Suppose the generalized plant (5)

satis�es Assumptions (A1) - (A3) and D12 has the

singular value decomposition D12 = U

"
�
0

#
V T ,

where U and V are unitary matrices and � is a
diagonal matrix. Then, for a given 
 > 0, if the
algebraic Riccati equation

AT
HX1 +X1AH +X1R
X1 � Q
 = 0 (11)

admits a positive semi-de�nite matrix solution X1,
where

AH = A�B2(D
T
12D12)

�1DT
12C1 (12)

R
 = 
�2B1B
T
1 � B2(D

T
12D12)

�1BT
2 (13)

Q
 = �CT
1 (I �D12(D

T
12D12)

�1DT
12)C1(14)

and the structurally constrained feedback matrix
Fd (10) is chosen such that a dual system in the
packed matrix form satisfy







"
Atmp +B2Fd B1

Su(Fd � F ) 0

#





1

< 
 (15)

where

Atmp = A + 
�2B1B
T
1 X1 (16)

Su = �V T (17)

F = �(DT
12D12)

�1(BT
2 X1 +DT

12C1)(18)

then the controller u = Fd x (10) is a stabilizing
controller satisfying k Tzw k1< 
 (2).
In Theorem 1, the H

1
design problem is to

�nd the control (10) by optimizing (15) instead of
k Tzw k1 (2). Thus the optimization of (15) is
called a dual-design problem. The result of The-
orem 1 arises from the parametrization of all con-
trollers satisfying (2) having the structure Fd. Note
that the algebraic Riccati equation (11) arises from
an unconstrained H

1
optimization problem and F

(18) is the desired full-state feedback control.
The optimization (15) can be formulated as a

QMI problem which is, in general, di�cult to solve.
However, we introduce a free matrix parameter X
to form a second QMI problem which can be solved
as a sequence of LMI problems. The required de-
sign equations are stated in the following theorem.

Theorem 2: [6] If there exist M � 0, Fd having
the structure (10), and X such that the QMI

2
64 � 
�1MB1 �TSTu

�1BT

1M �I 0
Su� 0 �I

3
75 � 0 (19)

where Bs = B2S
�1
u , Bss = BsB

T
s , and

� = AT
FM+MAF�X

TBssM�MBssX+XTBssX
(20)

� = Fd � F + S�1u S�Tu BT
2M; AF = Atmp + B2F

(21)
then the control (10) satis�es k Tzw k1< 
 (2).
Theorem 2 is derived based on the bounded real

lemma [5]. The QMI (19) points to an iterative
approach to solve for Fd, namely, if X is �xed in
(20), then (19) reduces to an LMI problem for a
given 
 in the unknowns Fd and M � 0. The LMI
problem is convex and can be solved, if a feasible
solution exists, using existing LMI solvers [7] which
use e�cient interior point solution techniques. An
iterative design procedure is introduced in [6] in
which at every iteration, the trace of M is mini-
mized. Then X is set toM and the structure of Fd
is updated for the next iteration. When the itera-
tive algorithm converges, the controller parameters
Ck and Dk can be obtained from Fd. This itera-
tive method does not have global convergence, but
will converge if the initial full-state feedback solu-
tion F is close to a local solution. In addition, if
the method fails to converge, it does not necessarily
mean that there is no solution.
One of the major concerns with state-space de-

sign methods is that, in general, it is not possible to
directly impose constraints on the controller itself.
As a result, the design may provide a controller
having poles and zeros in the right half-plane, even
though a stable minimum-phase controller exists.
In the �xed-pole controller design, we can impose
constraints such as positive realness and decentral-
ized structure directly on the controller. For exam-
ple, if it is desired that the controller be positive
real, the LMI constraints [5]

"
AT
k P + PAk PBk � CT

k

BT
k P � Ck �(Dk +DT

k )

#
� 0 (22)

P = PT > 0 (23)

can be added to the design formulation, where P is
an nc�nc positive de�nite matrix. Because Ak and
Bk are already selected, (22) and (23) are linear in
the variables Ck, Dk, and P . Then the design pa-
rameters M , Fd = [ Ck Dk 0 ], X , and P need
to be selected to satisfy the inequalities (19), (22),



and (23). The resulting low-order controller will
then be minimum phase having no right-half-plane
zeros. This is an important point in power sys-
tem damping controller design because minimum-
phase lead-lag compensators have been shown to
provide good performance. If a decentralized con-
troller structure is desired, the controller matrices
Ak and Bk can be chosen to have an appropriate
block-diagonal form. In the LMI design, the corre-
sponding o�-diagonal blocks in Ck and Dk can be
set to zero. This decentralized design will be used
in the paper.

III. Design Results

This section presents the control design results
of the proposed algorithm to the system depicted
in Figure 2. The test system is a modi�ed 7-bus
equivalent model of the Itaipu generation and AC
transmission complex presented in [4]. The reader
can refer to [4] for a description of the complete
system data.
The system presents a control design challenge,

as attempts to stabilize the system using only one
power system stabilizer fail. The reason for this
limitation is due to the presence of an unstable
right-half-plane zero that occurs in the single-input
single-output (SISO) transfer function from the
AVR reference voltage to the rotor machine speed
regardless of the generator considered. The solu-
tion to this problem is to consider the closure of a
second stabilizer channel. In the coordinated de-
sign, we remark that for achieving global controlla-
bility, one of the PSSs must be placed at the Itaipu
generator.
The modal analysis of the system indicates that

there are two interarea modes of interest. Mode 1
behavior has the Southeast (SE) equivalent system
oscillating against the Itaipu complex as shown in
the mode shape of Figure 3. Mode 2 behavior has
the South system (represented by Santiago, Seg-
redo and Areia) oscillating against the Southeast
together with Itaipu (Figure 4). The system also
presents two local modes of oscillation within the
Southern system, Mode 3 represents Areia and Seg-
redo oscillating against Santiago (Figure 5), and
�nally Mode 4 which represents Areia oscillating
against Segredo (Figure 6).
Table I presents �ve cases, obtained from the

same transmission network con�guration, where
the values of the reactances X5�6 and X6�7 (con-
necting Buses 5-6 and Buses 6-7) are varied. The
generator and load levels are the same in all cases.
Table I also shows the frequencies (Hz) and the
damping ratios (%) of Modes 1 and 2 in all �ve
system conditions. Regardless of the system con-
dition, both local modes (Mode 3 and Mode 4)
present a damping ratio of about 20% and os-
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Fig. 3. Rotor-Speed Mode Shape (Mode 1)

cillation frequency of 1.46 Hz. Case #5 shows
the weakest operating condition, due to the higher
impedance lines.
Based on the previous system description we as-

sume that there is one PSS at Segredo and another
at the Itaipu generator. Both stabilizers are con-
sidered for the coordinated design using the tech-
nique described in Section II. The reactances of
transmission lines 5-6 and 6-7 are considered as the
uncertainties in the model, and the design is based
on the system Case #5. Figure 7 shows the mul-
tivariable pole-zero map (Case #5) when consid-
ering PSSs, derived from rotor-speed, at Segredo
and Itaipu generators. Note that the zero loca-
tions allow damping enhancement for both inter-
area modes.
Two control designs are compared. Design #1
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TABLE I

Open-loop Operating Conditions

Case X5�6 X6�7 Mode 1 Mode 2
# pu pu f(Hz) �(%) f(Hz) �(%)

1 0.39 0.57 0.86 -11.9 0.94 3.8
2 0.50 0.57 0.86 -12.1 0.92 3.5
3 0.80 0.57 0.85 -12.7 0.88 2.8
4 0.39 0.63 0.84 -13.7 0.93 4.0
5 0.39 0.70 0.80 -16.6 0.93 4.2
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Fig. 7. Multivariable Pole-Zero Map

was taken from [4], and Design #2 was obtained
by the LMI algorithm of this paper.

Design #1

PSS3(s) = 10�
3s

1 + 3s
�

�
1 + 0:3s

1 + 0:075s

�2

PSS4(s) = 16�
3s

1 + 3s
�

�
1 + 0:52s

1 + 0:065s

�2

Design #2

PSS3(s) = 190�
3s

1 + 3s
�
s2 + 8:0s+ 36:0

s2 + 27:0s+ 178

PSS4(s) = 863�
3s

1 + 3s
�
s2 + 5:6s+ 5:2s

s2 + 30:8s+ 237

Table II presents the closed-loop damping ra-
tios (%) for the two least damped modes, which



turned out to be always the interarea Mode 1 and
either the local Mode 4 or the Itaipu exciter mode.
The latter mode is referred as Mode* in Table II.
The second and third columns of the table show
the damping ratios when the loop is closed with
controllers from Design #1. The fourth and �fth
columns give the damping ratios when the loop is
closed with controllers from Design #2.

TABLE II

Closed-Loop System Damping Ratios (%).

Case Design #1 Design #2
# Mode1 Mode* Mode1 Mode*

1 5.65 10.50 6.86 10.12
2 5.15 10.64 6.49 10.28
3 4.09 10.96 5.71 10.64
4 4.46 10.91 5.83 10.59
5 2.50 11.59 3.94 11.36

To assess the performance of both designs, mul-
tivariable root locus for varying gains of the two
stabilizers are shown in Figures 8 and 9. Figure 8
is obtained for the base case and Figure 9 is ob-
tained for the weakest case (Case #5). Note the
similar performances of both designs, which leads
to the conclusion that the LMI-based design for
third-order stabilizers has comparable performance
to the original design [4] (also of third order).
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Fig. 8. Root Contour when Varying Gains of the Two
Stabilizers at Con�guration #1

IV. Conclusions

This paper presented a systematic power system
damping control design based on an iterative LMI
algorithm, which can accommodate a decentralized
control structure once the controller poles are �xed.
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Fig. 9. Root Contour when Varying Gains of the Two
Stabilizers at Con�guration #5

The performance of the damping controllers de-
signed with the LMI algorithm was comparable to
those previously obtained through a more conven-
tional design [4], but of the same order.
It was left open for further investigations the in-


uence of the controller order on system robustness
and performance.
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