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ABSTRACT 
 
This paper describes control structures and computer 
methods to enhance the practical use of thyristor 
controlled series compensation (TCSC) in power 
systems. The location and controller design of the 
TCSC devices, to damp system oscillations, are based 
on modal analysis and frequency response techniques, 
respectively. Results are given for a large practical 
power system. 
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1. INTRODUCTION 
 
The potential benefits of Flexible AC Transmission 
Systems (FACTS) are now widely recognized by the 
power system engineering community [1,2]. FACTS 
devices, of the TCSC type, are starting to be 
commissioned in North America [3,4]. The short-term 
need to assess the impact of FACTS technology has led 
to R&D efforts on modeling, methodologies and 
software for both static and dynamic analyses. Dynamic 
studies must contemplate both low and high frequency 
phenomena, calling for the use of different computer 
tools. 
 
This paper deals with small-signal electromechanical 
stability, focusing attention on TCSC control aspects. A 
tutorial exercise on TCSC line power scheduling 
strategies is presented and a simple control structure 
proposed for the practical implementation of the 
"constant angle" strategy [5]. Eigenvalue, frequency and 

step response results are provided. Full data on the 
small power system utilized in the exercise are given so 
the results may be reproduced. 
 
A mathematically rigorous methodology is presented 
for the determination of the most suitable transmission 
lines for installing TCSC devices in order to damp 
electromechanical oscillations in large power systems. 
The algorithms developed are directly implemented on 
the augmented power system equations [6,7,8,9] leading 
to efficient computer code. 
 
The TCSC siting algorithm produces ranking lists of 
modal controllability factors or transfer function 
residues [10,11] and is similar to that presented in [6] 
for static VAr compensators. The tuning of the various 
TCSC controllers is based on sequential single loop 
designs through frequency response techniques. This 
tuning procedure was utilized in [7,12] for the design of 
stabilizing signals to generator excitation, SVCs and 
HVDC links. 
 
Non-linear time domain simulations were not 
considered. The notations adopted in the paper are 
defined as used, except for the well established 
symbols. 
 
 
2. SITING TCSC DEVICES TO DAMP POWER 

SYSTEM OSCILLATIONS 
 
2.1. TCSC Model and Control System Diagram 
 
Figure 1 shows the control system diagram of a TCSC 
connected to a given transmission line, considering the 
dynamics of the entire power system model. The blocks 
TCSC(s) and STAB(s) denote the transfer functions of 
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the TCSC device and its stabilizing signal, respectively. 
The blocks F1(s) and F2(s) relate the TCSC output 
(variable line susceptance, Bkj) with the controlled 
system variable (Xcontrolled) and the variable used as the 
input to the stabilizer, Xinp. Functions F1(s) and F2(s) 
are of the same order as the number of state variables in 
the system. The symbol Xref denotes the controller 
reference, whose value in steady state is close or equal 
to Xcontrolled. 
 
The TCSC incremental model consists of current 
injections into the power system network at buses k and 
j, which are the device terminals. The initial value for 
its susceptance (Bkj

0) is directly modeled into the load 
flow equations. The incremental susceptance (∆Bkj) is 
determined, at any instant, by the output of the TCSC 
controller. The controller dynamics is modeled through 
a set of differential and algebraic equations. 
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Figure 1. TCSC Control System Diagram 
 
2.2. Background Theory and Proposed Methodology 
 
References [6,10] explain the theoretical aspects 
concerning the use of transfer function residues to find 
the most suitable locations for placing damping sources 
for power system oscillations. Reference [10] uses 
transfer function residues to find the most suitable 
generators for placing stabilizers in a large system. 
Reference [6] uses residues to determine suitable buses, 
out of all buses in the system, to place the whole static 
compensator. This differs from the previous generator 
stabilizer problem in which generator sites are already 
defined. The use of the augmented power system 
equations [6,7,8,9] is essential to the practical 
application of these concepts to large scale systems. 
 
The proposed method for siting TCSC devices  
is an extension of that described for static VAr 
compensators [6]. The diagram of Figure 2 is used to 
explain the concepts of this method. 

F   (s)kj

Power System

TCSC Device
at Line k-j

Σ

Active Power
at Line k-j

∆ ∆P   (s)

Susceptance
of Line k-j

  kj
B   (s)
  kj

ε

Incremental
Gain

TCSC (s)

 
Figure 2. A TCSC of Incremental Gain is  
Inserted to Line k-j of the Power System 

 
The poles of the open-loop transfer function (OLTF) 
Fkj(s) are the system eigenvalues for the base case 
studied. The closure of the feedback loop of incremental 
gain (Figure 2) will cause small deviations in the system 
eigenvalues [6,10]. These eigenvalue deviations are 
given by the expression: 
 

∆λi  =  -  Ri
kj  ε  TCSC(λi)                 (1) 

 
 λi being a pole of Fkj(s) and Ri

kj the associated 
residue.  
 
A critical (low damped or unstable) eigenvalue λc 
undergoes small changes ∆λc which are therefore 
proportional to the moduli of the residues Rc

kj. Note 
that there exists nl residues Rc

kj, where nl is the total 
number of transmission lines in the system. 
Transmission line ranking, for placing TCSC devices to 
damp a critical mode λc, can therefore be  
based on the residues for transfer functions  
∆Pkj(s=λc) / ∆Bkj(s=λc) of largest moduli, where  
∆Pkj is the incremental power flow in line between 
buses k and j and ∆Bkj is the change in the susceptance 
of the same line. Another valuable ranking list can be 
made from the moduli of the modal controllability 
factors [6] associated with the input disturbances to line 
susceptances ∆Bkj. 
 
 
3. TCSC CONTROL ASPECTS ILLUSTRATED 

ON A LINE POWER SCHEDULING EXERCISE  
 
The small power system of this exercise (see Figure 3 
and Appendix) comprises a salient-pole synchronous 
generator connected to an infinite bus through a double-
circuit transmission line. The operating points 
considered correspond to generation levels of 500 and 
1000 MW.  
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Figure 3. Small Power System 
 
The generator has a 5th order model whose 
mathematical formulation is fully described in [7]. A 
first order model of a TCSC device is connected to 
either line 1-2 or line 2-3(#2) and is considered  
to be floating (i.e., the impedance between the TCSC 
terminals is zero) at steady-state. 
 
The block diagram and parameters of the TCSC 
Proportional-Integral (PI) controller are given in  
Figure 4. The PI control action is made faster than 
needed in practice for tutorial purposes. 
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Figure 4. TCSC Controller for All Cases 

 
Two strategies for scheduling the power flow of line  
2-3(#2) with a local TCSC device are here implemented 
simply by changing the ∆Xcontrolled  
signal defined in figures 1 and 4. One strategy maintains 
the power flow in the line with  
variable series compensation at a specified value  
(∆Xcontrolled = ∆P23(#2)) and will here be referred  
to as "constant line power" strategy. The opposite 
strategy is to force the compensated line to absorb all of 
the increased power dispatch of the line 1-2  
(∆Xcontrolled = ∆P23(#2) - ∆P12). The latter is known as a 
"constant-angle" strategy [5] since it keeps the flows on 
parallel, fixed impedance, paths at constant level. 
 
The "constant angle" control structure proposed in this 
paper requires the telecommunication of the remote 
signal ∆P12, but has a reliable and inexpensive practical 
implementation due to the slow dynamics of the line 
power scheduling process. In the general case, the 
increased power interchange to be channeled through a 
specified transmission  corridor is given by the 

summation of power flow increments of several lines (Σ
∆Pkj). The controlled variable for the proposed 
implementation of the "constant angle" strategy, in the 
general case, would be ∆Xcontrolled = ∆Ptc - Σ∆Pkj, 
where ∆Ptc are the power deviations in the specified 
transmission corridor. 
 
The "constant angle" control strategy can be synthesized 
with the use of local signals only [5] but it is not as 
robust to system changes as the simple control structure 
described in this section. 
 
Table 1 displays the system eigenvalues for different 
TCSC locations and control strategies. Case A 
corresponds to the system with no TCSC. Case B 
includes the action of a TCSC at line 2-3(#2) regulating 
its own power flow. Case C considers the action of a 
TCSC at line 1-2 regulating its own power flow.  
Note that a zero eigenvalue appears indicating an 
uncontrollable system. The problem has arisen because 
the TCSC controller imposes a constant power flow at 
line 1-2 irrespective of angle deviations at its terminals. 
This problem has not appeared in Case B because  
line 2-3(#1), which is parallel to the series compensated 
one, provides a free path for synchronizing power 
exchanges between the generator and the infinite bus. 
Case D refers to the system with the TCSC at  
line 2-3(#2) controlled to absorb all of the increased 
power flow in line 1-2 ("constant angle" control). This 
strategy is effected in case D by defining the variable  
∆Xcontrolled = ∆P23(#2) - ∆P12. 
  

A
 

No TCSC 
 

 
B TCSC at line 2-3(#2) 

"Constant Line Power" 

-24.63 
-3.940 ± j6.901 

-6.505 
-0.362 ± j6.219  

-24.65 
-3.877 ± j6.879 

-6.584 
-0.633 ± j5.740 

-2.271  
C

 
TCSC at line 1-2 

"Constant Line Power" 

 
D 

 
TCSC at line 2-3(#2) 

"Constant Angle" 

-27.64 
-3.916 ±j6.880 

-6.532 
-0.592 ± j6.027 

0.0 

-24.49 
-4.291 ± j6.891 
-0.685 ± j8.034 

-7.017 
-1.652 

 
Table 1. Eigenvalue Results for Cases A, B, C and D 

(Generation Level of 500 MW) 
 

Step response results of the linearized system are now 
presented to help evaluating the performance of the 
different alternatives. The applied disturbance is a 1% 
step in the mechanical power reference of the 
synchronous generator. The chosen set of monitored 
variables are the incremental deviations in active power 



flow at the sending end of the three lines of the  
system (∆P12, ∆P23(#1) , ∆P23(#2)).  
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Figure 5. Case A - System with no TCSC Device 
(λ=-0.362 ± j6.219)  

 
Figures 5, 6, 7 and 8 show the system step responses for 
cases A, B, C, and D, whose eigenvalues were 
displayed in Table 1. The dominant system eigenvalues 
are also shown in the captions of these plots. Figure 5 
shows that, in the absence of a TCSC device, the power 
increase ∆P12 is equally shared between the two circuits 
of the transmission line. Case B results (Figure 6) show 
the power flow in line 2-3(#2) returning to its scheduled 
pre-disturbance value through TCSC action. The 
increased power transfer flows solely through the 
parallel path (line 2-3(#1)).  
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Figure 6. Case B - TCSC at Line 2-3(#2) with  
"Constant Line Power" Strategy (λ=-0.633 ± j5.740) 

 
Case C results are displayed on an enlarged time scale 
(Figure 7) to better show system uncontrollability  
(λ = 0). The incremental variables plotted in Figure 7 
are the voltage angle at bus 2 (∆θ2), in radians, and the 
active power flows at the sending and receiving ends of 
line 1-2: ∆P12(send) and∆P12(rec.), both in per unit. The 
final value of the power increment ∆P12(send) is equal 
to the applied step disturbance to the generator 
mechanical power. The reference to the TCSC 
controller was left unchanged (∆Xref = 0), and  
therefore a constant error is continuously seen by the  

PI controller. The susceptance ∆B12 will then raise 
indefinitely, increasing line current and consequently its 
resistive losses. Figure 7 shows that active power 
deviations ∆P12(rec.) decreases while the bus angle ∆θ2 
increases. 
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Figure 7. Case C - TCSC at Line 1-2 with  
"Constant Line Power" Strategy 

 (λ=-0.592 ± j6.027; λ=0) 
 
Case D results (Figure 8) show the compensated  
line 2-3(#2) absorbing all of the increased active power 
generation. The power flow in the parallel path  
(line 2-3(#1)) is seen to settle down at the  
pre-disturbance value. 

Time (seconds)

In
cr

em
en

ta
l P

ow
er

 D
ev

ia
tio

n 
(p

u)

-0.005

0

0.005

0.01

0.015

0.02

0 1 2 3 4 5 6 7 8 9 10

P12

P23(#1)

P23(#2)

Figure 8. Case D - TCSC at Line 2-3(#2) with  
"Constant Angle" Strategy (λ=-0.685 ± j8.034) 

 
Consider another system operating point with the 
generated power raised to 1000 MW. Case E, whose 
eigenvalues are shown in Table 2, has the same TCSC 
location and parameters as case D. The 
electromechanical mode (λ=+0.701 ± j7.765) is seen to 
be highly unstable for case E. A stabilizing signal to the 
TCSC device can make the system stable for this higher 
power transfer. Stabilizer design is based on Nyquist 
plots of a chosen open loop transfer function (OLTF), 
considering the diagram of Figure 1. Closed loop 
stability in this case is obtained by a counter-clockwise 
encirclement of the -1 point by the Nyquist plot of the 
OLTF after compensation. The reader is referred to 



[7,12] for detailed information regarding the frequency 
response methods of this paper. 
 
Generator speed was chosen as the TCSC stabilizer 
input (Xinp = ωgen) and, therefore, the OLTF of interest 
is ∆ωgen(s)/∆Xref(s), where Xref is the TCSC reference. 
The Nyquist plot of Figure 9 is obtained with the 
feedback loop of the variable ∆Xcontrolled closed.  
Figure 9 directly informs that the feedback controller 
must provide considerable amplification but minimum 
phase compensation: only a lag of 11.5° at the center 
frequency of 7.8 rad/s.  
 

TCSC at line 2-3(#2) 
"Constant Angle" Strategy 

E No stabilizer F TCSC with stabilizer 
-23.90 

-5.348 ± j6.933 
-7.820 

+0.701 ± j7.765 
-1.807  

-23.73 
-6.416 ± j6.679 
-0.905 ± j7.741 
-6.570 ± j0.703 

-1.768 
-0.344 

 
Table 2. Eigenvalues for Cases E and F 

(Generation Level of 1000 MW) 
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 (λ=+0.701 ± j7.765) 
 
 
The stabilizer of Figure 10 provides the required 
compensation and is seen to be very effective from the 
eigenvalue results of Table 2 (Case F) and the step 
response plots of Figure 11. 
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Figure 10. TCSC Stabilizer in Case F 
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"Constant Angle" Strategy and Stabilizer  
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4. SITING AND TUNING TCSC DEVICES TO 

DAMP OSCILLATIONS IN A LARGE  POWER 
SYSTEM 

 
The power system analyzed is the 616 bus, 995 line,  
50 generator model of the South-Southeast Brazilian 
System described in [6]. There were stabilizers in  
16 generators of the original system model causing all 
eigenvalues to have damping ratios above 5% for the 
operating point considered. The system eigenvalues for 
the same operating point are shown schematically in 
Figure 12, in the absence of the 16 power system 
stabilizers. 
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Damping Devices (362 State Variables) 

 
Note in Figure 12 that eight eigenvalues have damping 
ratios below the minimum level of 5%. The objective of 
the study conducted in this section is to evaluate the 
capability of the methodology and software developed 
for locating and tuning various TCSC devices to 
simultaneously damp all the eight modes. The task of 



controlling line power flows was not here assigned to 
these TCSC devices.  
 
Adequate power oscillation damping is usually achieved 
in practice through power system stabilizers added to 
generating plants. When all the economically attractive 
damping sources are exhausted one should look for 
other options such as TCSC devices. However, for the 
purpose of methodology validation the damping of all 
the eight modes will be here exclusively effected 
through TCSC devices. 
 
A major system mode is the South-Southeast interarea 
mode which is displayed, in a phasor diagram form, in 
Figure 13. Another critical one is the Itaipu 
multimachine mode (Figure 14), whose largest 
participation comes from the gigantic Itaipu power 
plant. The captions of these figures show the names of 
some generators which have high participation in the 
two mode shapes. 
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Figure 13. Rotor Speed Mode Shape of the  
South-Southeast Interarea Mode (0.56Hz) 

 
A sequential strategy was adopted for locating and 
tuning the various TCSC damping devices. One mode 
was studied at a time, starting by selecting a set of the 
most adequate transmission lines in the system for 
placing the TCSC based on mode controllability or 
residue information.  
 
The choice of the input variable to the TCSC damping 
device was based on mode observability factors [6] and 
frequency response analysis. This helped choosing 
variables which needed the least gain and phase 
compensation to damp the mode analyzed. In 
multivariable control terminology, the design procedure 
of this paper is sequential loop closing aided by  
an effective loop-assignment technique  (see chapter 4 
of [13]). The use of input variables from the 

transmission network generally led to more complex 
compensation circuitry. Simpler and more robust 
designs were obtained by using rotor speed signals of 
selected machines as the TCSC inputs.  
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 3-S. Cruz 6-G.B. Munhoz  9-S. Santiago 3 
 

Figure 14. Rotor Speed Mode Shape of the Itaipu  
Multimachine Mode (1.11Hz)  

 
The TCSC assigned to damp the South-Southeast mode 
was sited on the Assis-Maringá 230 kV line, which 
yielded the largest ∆Pkj(s)/∆Bkj(s) residue. This 
transmission line residue is numbered 1 in Figure 15, 
which depicts the major line residues in phasor diagram 
form. Note that, despite the large number of system 
lines (995) and the interarea nature of the mode, only 
eleven lines have residues of magnitude greater than 
10% of the largest one. Six of these lines have their 
names given in the caption of Figure 15.  
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Figure 15. Residues for the Transfer Functions  
∆Pkj(λc)/∆Bkj(λc) for λc = -0.002 ±j3.511 

The input signal to the TCSC located at the  
Assis-Maringá 230 kV line was chosen to be the  



rotor speed of the 400 MVA Itaúba generator  
distant 700 kilometers to the South. This single TCSC 
effectively damped the South-Southeast mode. The 
TCSC designed to damp the Itaipu mode was placed at 
the Itaipu 765 kV transmission system and had the rotor 
speed of the Itaipu generator as the TCSC input. 
 
Eight TCSC devices were sequentially located and 
tuned to bring all system modes to above a 5%  
damping level. The transfer functions for these  
eight TCSC damping devices comprised a washout  
and lead-lag blocks. TCSC controller parameters were 
determined from Nyquist plots of the appropriate  
∆ωgen(s)/∆Xref(s) transfer functions.  
 
Compensation requirements for each one of the eight 
control loops were always below ± 20 degrees, 
calculated at the frequency of the oscillatory mode to be 
damped. The phase compensation needed for TCSC 
input signals were minimum for generator speeds and 
around 90 degrees for line powers (results not shown). 
These findings are in agreement with those reported in 
[1]. Figure 16 shows the loci of the system eigenvalues 
in the presence of the eight TCSC oscillation damping 
devices derived from generator speed. 
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Figure 16. System Eigenvalues in the Presence of  
Eight TCSC Devices (375 State Variables) 

 
Time response results are shown for a simultaneous 
disturbance to the mechanical power of three 
generators: (0.01∆PItaipu - 0.01∆PItaúba + 0.005∆PJupiá), 
where Itaipu, Itaúba and Jupiá are large generating 
plants. This disturbance excites the major system 
modes. The variables pictured in the plots are the 
electrical power outputs of the same generators. The 
system step responses, in the absence and presence of 
the eight TCSC damping devices, are shown in  
figures 17 and 18 respectively. 

Time (seconds)

In
cr

em
en

ta
l P

ow
er

 D
ev

ia
tio

n 
(p

u)

-0.02

-0.01

0

0.01

0.02

0.03

0 1 2 3 4 5 6 7 8 9 10

Itaipu

Itaúba

Jupiá
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5. CONCLUSIONS 
 
An efficient and mathematically rigorous algorithm for 
locating TCSC devices for damping oscillations in 
power systems is described. The results obtained for a 
large practical system validated the proposed 
methodology. The decentralized damping control of the 
multiple oscillatory modes was built by sequential 
single-loop designs, centering each loop in the damping 
of a specific mode. Detrimental dynamic interaction 
remained at a very low level by:  
 
a) proper choice of the locations and inputs to the TCSC 

devices;  
 
b) proper gain and phase compensation in the single 

loop designs based on frequency response plots of the 
large order system transfer functions.  

 
The study will proceed by investigating the robustness 
of TCSC damping action to system changes [14]. The 
proposed algorithm can also yield TCSC siting 
information for SSR damping, if applied to the 
appropriate (R, L, C network transients represented) 
dynamic model of the power system [5]. 



 
TCSC damping concepts applied to multimachine 
oscillations were described in [15] for simplified system 
models. This paper further advances the work of [15] by 
providing TCSC siting and tuning methodologies suited 
for large practical power system models. 
 
The "constant line power" strategy is meant to be 
applied to transmission systems having two or more 
parallel paths. The uncontrollable condition (λ = 0) 
observed in Case C eigensolution and time response 
results would occur in practice only during line outages. 
The system would remain, on the occurrence of a zero 
eigenvalue condition, drifting between the maximum 
and minimum output limits of the TCSC device. A 
protection scheme should, therefore, be devised to 
inhibit the TCSC "constant line power" control during 
some critical system contingencies. The TCSC damping 
function could however be left operational during such 
contingencies to enhance system performance. 
 
The results of this paper are clear examples of the 
benefits gained from the complementary use of modal 
analysis, frequency response and step response tools 
which are presently available in modern small-signal 
stability packages. The control implementation of the 
TCSC "constant angle" strategy proposed in this paper 
is thought to be original. 
 
 
6. ACKNOWLEDGMENT 
 
The authors wish to thank Mr. Luiz Alberto S. Pilotto,  
from CEPEL, for the stimulating discussions on FACTS 
technology. 

 
 

7. REFERENCES 
 

[1] Proceedings: FACTS Conference 2, EPRI 
publication TR-101784, Project 3022, December 
1992. 

[2] Technology and Benefits of Flexible AC 
Transmission Systems, CIGRÉ Joint Session of 
Study Committees 14/37/38, Paris, August 30-
September 5, 1992 

[3] J. Urbanek, R. J. Piwko, E. Larsen and 
others,"Thyristor Controlled Series Compensation 
Prototype Installation at the Slatt 500kV 
Substation", paper 92SM467-1 PWRD, presented 
at the IEEE/PES Summer Meeting, Seattle,  
July 1992.  

[4] N. G. Hingorani, "Flexible AC Transmission", 
IEEE Spectrum, April 1993, pp 40-45. 

[5] E. Larsen, C. Bowler, B. Damsky, S. Nilsson, 
"Benefits of Thyristor Controlled Series 
Compensation",  International Conference on 
Large High Voltage Electric Systems (CIGRÉ), 
paper 14/37/38-04, Paris, Sept. 1992. 

[6] N. Martins & L. T. G. Lima, "Determination of 
Suitable Locations for Power System Stabilizers 
and Static Var Compensators for Damping 
Electromechanical Oscillations in Large Scale 
Power Systems", IEEE Transactions on  
Power Systems, Vol. PWRS-5, pp. 1455-1469,  
November 1990. 

[7] N. Martins & L. T. G. Lima, "Eigenvalue and 
Frequency Domain Analysis of Small-Signal 
Electromechanical Stability Problems" IEEE 
Symposium on Application of Eigenanalysis and 
Frequency Domain Methods for System Dynamic 
Performance, publication 90TH0292-3PWR,  
pp. 17-33, 1990. 

[8] P. Kundur, G. J. Rogers, D. Y. Wong, L. Wang, 
M. G. Lauby, "A Comprehensive Computer 
Program Package for Small Signal Stability 
Analysis of Power Systems",  IEEE Transactions 
on Power Systems, PWRS-5, pp. 1076-1083, 1990. 

[9] L. Wang, A. Semlyen, "Application of Sparse 
Eigenvalue Techniques to the Small Signal 
Stability Analysis of Large Power Systems".  
IEEE Transactions on Power Systems,  
Vol. PWRS-5, pp. 635-642, 1990. 

[10] V. Arcidiacono, E. Ferrari, R. Marconato, J. 
Dos Ghali,   D. Grandez, "Evaluation and 
Improvement of Electromechanical Oscillation 
Damping by Means of Eigenvalue-Eigenvector 
Analysis. Practical Results in the Central  
Peru Power System", IEEE Transactions on  
Power Apparatus and Systems, Vol. PAS-99,  
pp. 769-778, March/April 1980. 



[11] F. L. Pagola, J. I. Pérez-Arriaga, G. C. 
Verghese, "On Sensitivities, Residues and 
Participations. Applications to Oscillatory Stability 
Analysis and Control", 1988 IEEE Summer 
Meeting, paper 88 SM 692-6, 1988. 

[12] N. Martins, N. J. P. Macedo, A. Bianco, H. J. C. 
P. Pinto, L. T. G. Lima, "Proposal for a 
Benchmark System for Power System Oscillation 
Analysis and Control", invited paper presented  
at CIGRÉ-Study Committee 38 International 
Colloquium on Power System Dynamic 
Performance, Florianópolis, Brazil, Sept. 1993. 

[13] J. M. Maciejowski, "Multivariable Feedback 
Design", New York: Addison Wesley, 1989. 

[14] J. F. Hauer, "Reactive Power Control as a Means 
of Enhanced Interarea Damping in the Western 
U.S. Power System - A Frequency-Domain 
Perspective Considering Robustness Needs", in 
IEEE Tutorial Course: Application of SVS for 
System Dynamic Performance, publication  
87 TH 01875 PWR, pp. 79-82, 1987. 

[15] F. P. de Mello, "Exploratory Concepts on Control 
of Variable Series Compensation in Transmission 
Systems to Improve Damping of 
Intermachine/System Oscillations",  1993 IEEE 
Winter Meeting, paper 93 WM 208-9, 1993. 

 
 
8. BIOGRAPHIES 
 
Nelson Martins B.Sc. (72) Elec. Eng. from Univ. 
Brasilia, Brazil; M.Sc. (74) & Ph.D. (78) degrees from 
UMIST, UK. Dr. Martins works in CEPEL since 1978 
in the development of computer tools for power system 
dynamics and control. 
 
Hermínio J.C.P. Pinto B.Sc. (86) and M.Sc. (90) Elec. 
Eng. from Fed. Univ. of Rio de Janeiro, Brazil. Since 
1986 he is with CEPEL and his current work and 
interests include power system operation and control 
and parallel processing. 
 
André Bianco B.Sc. (90) Elec. Eng. from Univ. Gama 
Filho and is now working towards his M. Sc. degree in 
the Catholic Univ. of Rio de Janeiro. His main interests 
are voltage stability and power system dynamic 
analysis. 
 
Nilo J.P. Macedo B.Sc. (79) Elec. Eng. from Catholic 
Univ. of Rio de Janeiro and M.Sc. (92) from Fed. Univ. 
of Rio de Janeiro. Mr. Macedo is a senior engineer at 
Furnas Centrais Elétricas, where he works in power 
system operations planning.  
 
 
APPENDIX 

 

Small Power System Data 
 
Frequency: 60 Hz;    
System and Generator Base: 1000 MVA. 
 

Line Data for All Cases 
Line Circuit Impedance (%) 

From To  R X 
1 2  0.70 10.0 
2 3 #1 6.40 90.0 
2 3 #2 6.40 90.0 

 
Bus Data for Cases A, B, C and D 

Bus |V| θ Pgen Qgen 

 pu degrees MW MVAr 
1 1.000 15.9 500. 34.0 
2 0.994 13.0   
3 1.000 0.0 -490.2 104.2 

 
Bus Data for Cases E and F 

Bus |V| θ Pgen Qgen 

 pu degrees MW MVAr 
1 1.000 32.8 1000. 218.7 
2 0.976 27.0   
3 1.000 0.0 -959.1 357.6 

 
Generator Data 

H = 5.00 X'd = 0.30 T'do = 7.50 
Xd = 1.00 X"d = 0.25 T"do = 0.09 
Xq = 0.70 X"q = 0.25 T"qo = 0.20 

Reactances given in per unit; time constants and  
inertia in seconds 

 
 The generator excitation control, for all cases, 
has the first order transfer function  

 
AVR(s) = 75 / (1 + s 0.05) 

 
 The remaining system data is given along the 
section 3 of this paper. 


