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Abstract

A new algorithm for the computation of dominant poles of transfer functions of large-scale
second-order dynamical systems is presented: Quadratic Dominant Pole Algorithm (QDPA).
The algorithm works directly with the system matrices of the original system, so no lin-
earization is needed. To improve global convergence, QDPA uses subspace acceleration, and
deflation of found dominant poles is implemented in a very efficient way. The dominant poles
and corresponding eigenvectors can be used to construct structure-preserving modal approx-
imations, but also to improve reduced-order models computed by Krylov subspace methods,
as is illustrated by numerical results. Generalizations to MIMO systems, higher-order systems
and the computation of dominant zeros are also described.

1 Introduction

A transfer function usually reflects the engineer’s interest in studying a given part of a large
dynamical system, and often only has a small number of dominant poles compared to the number
of state variables. The dominant behavior of the system can be captured by projecting the
state-space on the modes corresponding to the dominant poles. This type of model reduction
is known as modal approximation, see for instance [6, 37]. The exact computation of transfer
function dominant poles is also of interest to several control-oriented applications involving large-
scale dynamical systems, such as tracing root-locus plots for controller parameter changes and
stabilizing poorly-damped poles [19]. The computation of the dominant poles and modes requires
specialized eigenvalue methods.

In [20] Newton’s method is used to compute a dominant pole of single-input single-output
(SISO) transfer function: the Dominant Pole Algorithm (DPA). In two recent publications this
algorithm was improved and extended to a robust and efficient method for the computation of
the dominant poles and corresponding eigenvectors of large scale SISO [26] and multi-input multi-
output (MIMO) transfer functions [25].

In this paper an efficient algorithm, Quadratic DPA (QDPA), for the computation of dominant
poles of second-order transfer functions is presented. It is shown how DPA can be generalized to
second and higher order polynomial transfer functions. Furthermore, it is described how subspace
acceleration and efficient deflation can be added to obtain a more effective algorithm. All algo-
rithms presented work directly with the state-space matrices of the higher order system, i.e. no
linearization is needed. Moreover, any modal equivalents that are constructed by projecting the
state-space matrices on the dominant left and right eigenspaces, preserve the structure of the
original system. The modal equivalents are compared to reduced-order models computed by
(second-order) Arnoldi methods [5, 4] and it is shown how such models can be improved by using
the dominant poles computed by QDPA.
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The paper is organized as follows. Section 2 gives definitions and properties of transfer func-
tions and dominant poles, and describes the basic Quadratic DPA algorithm (QDPA). In Section 3
subspace acceleration and deflation are added. Numerical results are presented in Section 4. Gen-
eralizations to higher order polynomial transfer functions and MIMO systems, and computation
of dominant zeros, are described in Section 5. Section 6 concludes.

2 Transfer functions and dominant poles

In this paper, the second-order dynamical systems (M,C,K,b, c, d) are of the form{
M ẍ(t) + Cẋ(t) +Kx(t) = bu(t)
y(t) = c∗x(t) + du(t), (1)

where M,C,K ∈ Rn×n, b, c,x(t) ∈ Rn, u(t), y(t), d ∈ R. In typical applications such as structural
system analysis, M is the mass matrix, K is the stiffness matrix and C is the damping matrix.
The vectors b and c are called the input and output vector, respectively. The transfer function
H : C −→ C of (1), a so-called second-order transfer function, is defined as

H(s) = c∗(s2M + sC +K)−1b + d. (2)

The poles of transfer function (2) are a subset of the eigenvalues λi ∈ C of the quadratic
eigenvalue problem (QEP)

(λ2M + λC +K)x = 0, x 6= 0.

Most material on quadratic eigenvalue problems in this section can be found in more detail in
[3, 36]. An eigentriplet (λi,xi,yi) is composed of an eigenvalue λi and corresponding right and
left eigenvectors xi,yi ∈ Cn (identified by their components in b and c):{

(λ2
iM + λiC +K)xi = 0, xi 6= 0, (i = 1, . . . , 2n),

y∗i (λ2
iM + λiC +K) = 0, yi 6= 0, (i = 1, . . . , 2n). (3)

The quadratic eigenvalue problem (3) has 2n eigenvalues with at most 2n right (and left) eigen-
vectors. It is clear that 2n eigenvectors do not form an independent set in an n-dimensional space.
Still, however, it is possible to obtain a partial fraction representation of the transfer function
similar to the first order case. The approach followed here is also described in [36, Section 3.5].
If K is nonsingular, the quadratic eigenvalue problem (3) can be linearized to the generalized
eigenproblem

Aφi = λiBφi, ψ∗iA = λiψ
∗
iB, φi, ψi 6= 0, (i = 1, . . . , 2n),

where

A =
[

0 −K
−K −C

]
, and B =

[
−K 0
0 M

]
, (4)

and

φi =
[

xi

λxi

]
, and ψi =

[
yi

λ̄iyi.

]
The corresponding linearized dynamical system is{

Bẋ(t) = Ax(t) + blu(t)
y(t) = c∗l x(t) + du(t), (5)

where bl = [0,bT ]T and cl = [cT , 0]T . Note that also other linearizations are possible, but
that this choice preserves symmetry, if M , C, and K are symmetric, and is convenient for other
reasons as well, as will become clear in the following. Denoting the matrix polynomial in (3) by
Q(λ) = λ2M + λC +K, it can be verified that for nonsingular K one has[

Q(λ) 0
0 I

]
= E(λ)(A− λB)F (λ), (6)
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where

E(λ) =
[
(C + λM)K−1 −I

−K−1 0

]
, and F (λ) =

[
I 0
λI I

]
,

i.e. the linear matrix A − λB is indeed a linearization of Q(λ) [36, Section 3.5]. Some matrix
manipulation of (6) gives

Q(λ)−1 =
[
I 0

]
F (λ)−1(A− λB)−1E(λ)−1

[
I
0

]
= −

[
I 0

]
(A− λB)−1

[
0
I

]
. (7)

Now assume that M and K are nonsingular and that all eigenvalues are semisimple (i.e., for
every eigenvalue the algebraic multiplicity is equal to the geometric multiplicity). Let Λ =
diag(λ1, . . . , λ2n) be a diagonal matrix with eigenvalues of (3), and let X = [x1, . . . ,x2n] and
Y = [y1, . . . ,y2n] have as their columns the corresponding right and left eigenvectors, respectively.
Because the eigenvalues of Q(λ) are semisimple, the eigenvalues of (A,B) are semisimple as well
and hence (A,B) is diagonalizable. The corresponding matrices with right and left eigenvectors
are

Φ =
[
X
XΛ

]
, and Ψ =

[
Y
Y Λ∗

]
.

If Φ and Ψ are normalized so that Ψ∗AΦ = Λ and Ψ∗BΦ = I, and if s is not an eigenvalue of
(A,B) (or (3)), then

(A− sB)−1 = Φ(Λ− sI)−1Ψ∗,

and by (7) it follows that1

Q(s)−1 = X(sI − Λ)−1ΛY ∗.

Finally, the partial fraction representation becomes

H(s) = c∗X(sI − Λ)−1ΛY ∗b =
2n∑
i=1

Ri

s− λi
,

where the residues are given by
Ri = (c∗xi)(y∗i b)λi. (8)

Note that the xi and yi are scaled so that

[
y∗i λiy∗i

] [
−K 0
0 M

] [
xi

λixi

]
= −y∗iKxi + λ2

i y
∗
iMxi = 1. (9)

Although there are different indices of modal dominance [2, 13, 26, 37], the following will be
used in this paper.

Definition 2.1. A pole λi of H(s) with corresponding right and left eigenvectors xi and yi

(−y∗iKxi + λ2
i y
∗
iMxi = 1) is called the dominant pole if

R̂i =
|Ri|

Re(λi)
> R̂j

for all j 6= i.

More generally, a pole λi is called dominant if |R̂i| is not very small compared to |R̂j |, for all
j 6= i. This can also be seen in the corresponding Bode-plot, which is a plot of |H(iω)| against
ω ∈ R: peaks occur at frequencies ω close to the imaginary parts of the dominant poles ofH(s). An

1Note that Λ is missing in equation (3.11) in [36, Section 3.5].
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approximation of H(s) that consists of k < 2n terms with |Rj | above some value, determines the
effective transfer function behavior [35] and is also known as transfer function modal equivalent:

Hk(s) =
k∑

j=1

Rj

s− λj
+ d.

Modal equivalents and reduced-order models that are constructed by projecting the state-space
matrices on the dominant left and right eigenvectors, preserve the structure of the original system:
if X and Y are n× k matrices with k � n right and left eigenvectors corresponding to dominant
poles, then the reduced-order model{

Mrẍr(t) + Crẋr(t) +Krxr(t) = bru(t)
yr(t) = c∗rxr(t) + du(t), (10)

with Mr = Y ∗MX,Cr = Y ∗CX,Kr = Y ∗KX ∈ Ck×k and br = Y ∗b, cr = X∗c ∈ Ck is still a
second-order system. In practice, it is advisable to make a real reduced model in the following
way: for every complex pole triplet (λ,x,y), construct real bases for the right and left eigenspaces
via [Re(x), Im(x)] and [Re(y), Im(y)], respectively. Let the columns of Xr and Yr be such bases,
respectively. Because the complex conjugate eigenvectors are also in this space, the real bases
formed by the columns of Xr and Yr for the eigenspaces are still (at most) k dimensional. The
real reduced model can be formed by using Xr and Yr instead of X and Y in (10). Preserving
the second-order structure is a desirable property from the modeling viewpoint, but also from the
viewpoint of generating realizable reduced-order models (see also [8]). Note that although the k
dominant poles are also poles of the original transfer function, the k-th order modal equivalent
will have k other poles as well, since it is a second-order system.

The dominant poles are specific (complex) eigenvalues of the QEP (3) and usually form a small
subset of the spectrum, so that rather accurate modal equivalents are possible for k � n. The
dominant poles can be located anywhere in the spectrum, depending on the components of the
corresponding eigenvectors in b and c [28]. Since the dominance of a pole is independent of d,
without loss of generality d = 0 in the following.

2.1 The Quadratic Dominant Pole Algorithm (QDPA)

The poles of transfer function (2) are the λ ∈ C for which lims→λ |H(s)| = ∞. For a pole λ of
H(s), lims→λ 1/H(s) = 0. In other words, the poles are the roots of 1/H(s) and a good candidate
to find these roots is Newton’s method. This idea is the basis of the Dominant Pole Algorithm
(DPA) [20] for first order transfer functions, but can be generalized to transfer functions of any
order (and to MIMO systems, see [21, 25]).

The derivative of H(s) = c∗(s2M + sC +K)−1b with respect to s is

H ′(s) = −c∗(s2M + sC +K)−1(2sM + C)(s2M + sC +K)−1b,

leading to the following Newton scheme:

sk+1 = sk +
1

H(sk)
H2(sk)
H ′(sk)

= sk −
c∗(s2kM + skC +K)−1b

c∗(s2kM + skC +K)−1(2skM + C)(s2kM + skC +K)−1b

= sk −
c∗v

w∗(2skM + C)v
, (11)

where v = (s2kM + skC + K)−1b and w = (s2kM + skC + K)−∗c. An implementation of this
Newton scheme, called QDPA, is represented in Alg. 1.

The two linear systems that need to be solved in step 3 and 4 of Alg. 1 can be efficiently solved
using one LU -factorization LU = s2kM + skC +K, by noting that U∗L∗ = (s2kM + skC +K)∗. If
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Algorithm 1 Quadratic Dominant Pole Algorithm (QDPA)
INPUT: System (M,C,K,b, c), initial pole estimate s0, tolerance ε� 1
OUTPUT: Approximate dominant pole λ and corresponding right and left eigenvectors x and

y
1: Set k = 0
2: while not converged do
3: Solve vk ∈ Cn from (s2kM + skC +K)vk = b
4: Solve wk ∈ Cn from (s2kM + skC +K)∗wk = c
5: Compute the new pole estimate

sk+1 = sk −
c∗vk

w∗
k(2skM + C)vk

6: The pole λ = sk+1 with x = vk and y = wk has converged if

‖(s2k+1M + sk+1C +K)vk‖2 < ε

7: Set k = k + 1
8: end while

the systems are solved exactly, QDPA converges asymptotically quadratically in the neigborhood
of a solution. If an exact LU -factorization is not available, one has to use inexact Newton schemes,
such as Jacobi-Davidson style methods [7, 32, 33, 34].

Note that QDPA operates on the original n× n state-space matrices and that no linearization
is needed. This is an advantage, since applying standard DPA to the linearized system (5) requires
factorizations of 2n× 2n matrices (although the 2n× 2n linear equations can also be solved using
only factorization of n× n matrices, see also Section 3.2.2).

It is well known that when computing Rayleigh quotients corresponding to v and w, this leads
to a second-order equation and hence to two Ritz values [3]. Selection of the best Ritz value can
be difficult [16]. However, in QDPA the choice is automatically made via the Newton update
(cf. step 5).

The matrix (s2k+1M +sk+1C+K) in step 6 can be reused in step 3 and 4 of the next iteration,
where it is needed anyway. In step 5, however, it is in general (depending on the sparsity of M
and C), more efficient to compute (2skM + C)vk as (2sk)(Mvk) + Cvk.

In [28] it is shown that DPA tends to converge to more dominant poles than two-sided Rayleigh
quotient iteration. The fixed right-hand sides in DPA are crucial for this behavior, and it is
expected that QDPA has the same desirable convergence.

In [11, 12] DPA was applied to compute dominant poles of high-order rational (polynomial)
matrices Y (s) (nodal admittance matrices for electrical networks), which together with the deriva-
tive Y ′(s) have straightforward construction laws. Other Newton based schemes (of which QDPA
in fact is a specialization) for the computation of eigenvalues are presented, for instance, in [30].
In [36, Section 6] and [23] large overviews of existing methods are given. The method presented
in this work focuses on the computation of dominant poles and is different from existing methods
for quadratic eigenproblems because it uses a new selection criterion and efficient deflation.

3 Subspace acceleration, selection and deflation

QDPA can be extended with subspace acceleration and a selection strategy to improve global
convergence to the most dominant poles, and deflation to avoid recomputation of already found
poles. Although the ingredients are the same as for SADPA [26] and SAMDP [25], they are
repeated here because especially the deflation procedure is more complicated for the quadratic
eigenvalue problem [22].
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3.1 Subspace acceleration and selection

Instead of discarding the intermediate approximations vk and wk of the right and left eigenvectors
in step 3 and 4, they are kept in (bi)orthogonal search spaces V and W . Following the Petrov-
Galerkin approach, the projected quadratic eigenvalue problem becomes

(λ̃2M̃ + λ̃C̃ + K̃)x̃ = 0, and ỹ∗(λ̃2M̃ + λ̃C̃ + K̃) = 0, (12)

where the k × k matrices M̃ , C̃, K̃ are given by

M̃ = W ∗MV, C̃ = W ∗CV, and K̃ = W ∗KV.

In the k-th iteration this projected quadratic eigenvalue problem is of small size k � n and hence
can be solved via linearization and the QZ method. With the eigentriplets (λ̃i, x̃i, ỹi) of (12),
approximate eigentriplets of the original problem can be constructed as

(λ̂i = λ̃i, x̂i = V x̃i, ŷi = W ỹi), (i = 1, . . . , k). (13)

From these approximate triplets the most dominant is selected. To determine the most dominant,
first the approximate left and right eigenvectors need to be normalized so that (cf. (9))

−ŷ∗iKx̂i + λ̂2
i ŷ
∗
iM x̂i = 1.

The approximate residues R̂i are given by

R̂i = (c∗x̂i)(ŷ∗i b)λ̂i,

and the approximate triplets are sorted in decreasing |R̂i|/|Re(λ̂i)| order. The shift in the next
iteration becomes sk+1 = λ̂1.

Note that it is not needed to compute the approximate eigentriplets (13) explicitly, since the
approximate residues R̂i can be computed as

R̂i = ((c∗V )x̃i)(ỹ∗i (W ∗b))λ̃i (= (c∗x̂i)(ŷ∗i b)λ̂i),

provided the x̃i and ỹi are scaled so that

1 = −ỹ∗i K̂x̃i + λ̃2
i ỹ
∗
i M̂ x̃i (= −ŷ∗iKx̂i + λ̂2

i ŷ
∗
iM x̂i).

Numerically, however, it is often more robust to normalize the approximate eigenvectors so
that

x̂∗i x̂i = ŷ∗i ŷi = 1,

since then the angles ∠(x̂i, c) and ∠(ŷi,b) are considered [15, 28]: the poles of interest are those
poles with eigenvectors in the direction of b and c. These scalings can still be performed on the
vectors x̃i and ỹi.

The use of subspace acceleration has several advantages. Firstly, it may improve global con-
vergence since the most dominant approximation is selected every iteration, and secondly, after
convergence of a pole triplet already good approximations of other dominant pole triplets may
be available. The price one has to pay are the costs for keeping the search spaces V and W
orthogonal.

3.2 Deflation

In contrast to ordinary and generalized eigenproblems, the at most 2n eigenvectors of a quadratic
eigenproblem obviously are not independent. Hence deflation by restriction cannot be applied
directly (without linearization). Instead, an approach inspired by the deflation described in [22] is
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used here. The idea is to implement deflation via the linearized eigenproblem, since the eigenvec-
tors of the linearized eigenproblem are independent (assuming all eigenvalues are nondegenerate).
This can be organized in two non-equivalent ways, as will be discussed next.

In the following, suppose that the (n× k) matrices X and Y have as their columns the found
right and left eigenvectors xi and yi (i = 1, . . . , k) of the QEP, respectively, and let Λ be a diagonal
(k× k) matrix with the corresponding eigenvalues on its diagonal. The corresponding eigenvector
matrices for the linearized problem (A,B) are

Φ =
[
X
XΛ

]
, and Ψ =

[
Y
Y Λ∗

]
.

Furthermore, let the eigenvectors in X and Y be normalized so that Ψ∗AΦ = Λ and Ψ∗BΦ = I.
Then it follows that the pencil

((I −BΦΨ∗)A(I − ΦΨ∗B), (I −BΦΨ∗)B(I − ΦΨ∗B))

has the same eigenvalues and eigenvectors as (A,B), but with the found eigenvalues transformed
to zero.

3.2.1 Approach I: Orthogonalizing against found eigenvectors

A way to implement deflation for the expansion vectors vk and wk of the search spaces V and W
of quadratic eigenproblem is:

1. Construct approximate eigenvectors for (A,B) via

φk =
[

vk

σvk

]
, ψk =

[
wk

σ̄wk

]
,

where σ is the corresponding approximate eigenvalue, computed via the Newton update
(cf. (11)).

2. Project these approximations via[
φ1

φ2

]
= (I − ΦΨ∗B)φk, and

[
ψ1

ψ2

]
= (I −ΨΦ∗B∗)ψk.

3. Expand V and W (bi)orthogonally with φ1 and ψ1, respectively.

3.2.2 Approach II: Deflation by restriction of linearized input and output vectors

A second way is to take advantage of the following efficient deflation for linear transfer functions.
It can be verified (Ψ∗BΦ = I) that with the deflated input and output vectors of the linearized
problem

bd =
[
b1

d

b2
d

]
= (I −BΦΨ∗)

[
0
b

]
, and cd =

[
c1

d

c2
d

]
= (I −B∗ΨΦ∗)

[
c
0

]
,

the residues of the deflated found poles are transformed to zero. Secondly, a straightforward
manipulation shows that

(skB −A)−1bd ⊥ B∗Ψ, and (skB −A)−∗cd ⊥ BΦ,

so that in principle no explicit B-orthogonalizations of expansion vectors against found eigenvec-
tors are needed. This property makes deflation very cheap, since per found pole only once two
projections are needed to compute bd and cd.

The linear systems for DPA applied to the linearized system (4) are

(skB −A)vg = bd, and (skB −A)∗wg = cd,
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with A and B as in (4). These systems can be solved without forming A and B: with v2
g and w2

g

solutions of

(s2kM + skC +K)v2
g = skb2

d + b1
d, and (s2kM + skC +K)∗w2

g = s̄kc2
d + c1

d,

it follows that for sk 6= 0

vg =
[
(−K−1b1

d + v2
g)/sk

v2
g

]
, and wg =

[
(−K−∗c1

d + w2
g)/s̄k

w2
g

]
.

The search spaces V and W are expanded with v1
g = (−K−1b1

d + v2
g)/sk and w1

g = (−K−∗c1
d +

w2
g)/s̄k, respectively. Although theoretically Ψ∗Bvg = Φ∗B∗wg = 0, components in the direction

of already found eigenvectors may enter the search spaces again because of rounding errors. To
avoid convergence to found eigentriplets it is therefore needed to compute the approximate residues
via the deflated input and output vectors bd and cd, so that in fact deflation takes place implicitly.
If x̂ and ŷ are approximate normalized right and left eigenvectors corresponding to λ̂ of the QEP,
then the approximate linearized residue is computed as

R̂ = (c∗d

[
x̂
λ̂x̂

]
)(

[
ŷ∗ λ̂ŷ∗

]
bd).

Because the residues of already found poles are transformed to zero, there is practically no risk
of selecting approximations of already found poles, so that expansion of the search spaces with
already found components is limited.

The two approaches described in this section are not equivalent, i.e. given the same shift sk,
they do not compute the same expansion vectors, nor is it possible to decide which is the best
on pure theoretical grounds. An advantage of Approach I is that the original Newton equations
are solved, but on the other hand the Newton update needs to be computed in step 1, and
moreover, orthogonalization against found eigenvectors must be carried out every iteration. The
big advantage of Approach II is that deflation needs to be carried out only once per found pole
(for b and c), while it is required that K is nonsingular, since solves with K and K∗ are needed.
Numerical experiments, reported in Section 4, show that Approach II is more efficient and effective
in practice.

3.3 Improving local convergence

As soon as an approximate pole triplet is accurate enough, for instance when ‖(s2k+1M + sk+1C+
K)vk‖2 < εr with ε < εr < 10−4, then convergence can be accelerated by using one or two
iterations of quadratic two-sided Rayleigh Quotient Iteration, described in Alg. 2 (see [32] for
a Jacobi-Davidson equivalent). The equation for the Rayleigh quotients, given left and right
eigenvector approximations wk+1 and vk+1, is

(λ̃2w∗
k+1Mvk+1 + λ̃w∗

k+1Cvk+1 + w∗
k+1Kvk+1)x̃ = 0,

which is a 1× 1 QEP, and hence provides two Ritz values, so a selection must be made [16]. The
best choice here would be to select the Ritz value closest to sk+1. For the goal of improving an
already rather accurate eigentriplet, however, it is very likely that the approximate eigenvalue
is already of the desired accuracy, while the corresponding eigenvector approximations need to
be improved. To avoid the selection procedure, the new eigenvalue is computed via the Newton
update (cf. step 5 in Alg. 1). Essentially, the QRQI presented in Alg. 2 is the same as QDPA, but
the right-hand sides are updated every iteration.

4 Numerical results

In this section, subspace accelerated QDPA is applied to two large-scale examples. The constructed
modal equivalents are compared to reduced-order models computed by a second-order Arnoldi
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Algorithm 2 Quadratic Rayleigh Quotient Iteration (QRQI)
INPUT: System (M,C,K,v,w), initial estimate s0, tolerance ε� 1
OUTPUT: Approximate eigenvalue λ and corresponding right and left eigenvectors x and y
1: Set k = 0
2: while not converged do
3: Solve vk+1 ∈ Cn from (s2kM + skC +K)vk+1 = (2skM + C)vk

4: Solve wk+1 ∈ Cn from (s2kM + skC +K)∗wk+1 = (2skM + C)∗wk

5: Compute the new eigenvalue estimate

sk+1 = sk −
w∗

k(2skM + C)∗vk+1

w∗
k+1(2skM + C)vk+1

6: The eigenvalue λ = sk+1 with x = vk+1 and y = wk+1 has converged if

‖(s2k+1M + sk+1C +K)vk+1‖2 < ε

7: Set k = k + 1
8: end while

method [4], and it is shown how the dominant poles computed by QDPA can be used to improve
such reduced-order models. All experiments reported here are executed in Matlab 7.3 on a SUN
Ultra 20 (AMD Opteron 2.8GHz, 2GB RAM). During the selection procedure of the most dominant
eigentriplet, the approximate eigenvectors are scaled so that (cf. Section 3.1)

x̂∗i x̂i + |λ̂i|2x̂∗i x̂i = ŷ∗i ŷi + |λ̂i|2ŷ∗i ŷi = 1.

4.1 The Butterfly gyro

The Butterfly gyro, developed at the Imego Institute with Saab Bofors Dynamics AB, is a vi-
brating micro-mechanical gyro that is used in inertial navigation applications, for instance for the
detection of (unwanted) forces in (unwanted) directions (see [1, 18] for more details). For future
improvements of the Butterfly gyro, efficiency and accuracy of gyro simulations is of great impor-
tance. Model order reduction not only reduces the simulation times significantly, it also provides
a state-space equivalent formulation of the original finite element representation, which is helpful
in developing and testing signal processing algorithms for the gyro.

The system matrices of the second-order system (M,C,K,b, c) can be found in the Oberwolfach
benchmark collection [1]. The full system has 17361 degrees of freedom, one input and 12 outputs.
For the experiments here b was the input vector B, c was taken to be the first column of the
17361× 12 selector (output) matrix L, and C = βK with β = 10−7 (equal to the settings in [18]).

The QDPA algorithm with subspace acceleration was used to compute 5, 10, 20, 30, and 35
dominant poles, using both of the deflation strategies described in Section 3.2. Since the frequency
range of interest is from 104 Hz to 106 Hz, the initial shift was s0 = 2πi(1.5 ·105). The process was
restarted with search spaces containing the kmin = 4 most dominant approximations at dimension
kmax = 10. Note that all linear system solves were computed directly, that is using the backslash
operator in Matlab, and not using LU -factorizations of Q(sk) = s2kM + skC + K, since this
appeared to be significantly faster (and requiring less memory). The running times shown in
Table 1 show that deflation Approach II (implicitly solving the linearized system and deflating
b and c, see Section 3.2.2) is more efficient than deflation Approach I (explicit orthogonalization
against found eigenvectors (Section 3.2.1)). The frequency response Bode plots, based on the
modal equivalents computed using the second deflation strategy, are shown in Figure 1. Since
qualitatively there is no difference between the two deflation strategies (not shown here), deflation
strategy II is the method of choice.

Typically, the 20 most dominant poles, causing the highest peaks in the Bode plot, were found
relatively quickly compared to the total running time for computing 35 dominant pole triplet.
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Table 1: Computational times for computing dominant poles and left and right eigenvectors of the
Butterfly Gyro (n = 17361). Deflation type I refers to explicit orthogonalization against found
eigenvectors, type II refers to using implicit linearization and deflated input and output vectors.
Every iteration a solve with Q(sk) = s2kM + skC +K and (Q(sk))∗ is needed.

Deflation I Deflation II
#poles Time (s) #iterations Time (s) #iterations

5 147 28 111 16
10 541 111 228 33
20 1157 235 576 91
30 1947 389 1100 191
35 2560 508 1345 233

As more dominant poles are found, only less distinguishing, more or less equally dominant poles
remain and QDPA has difficulties in finding these less dominant poles. Comparing the 20th, 30th
and 35th order solutions (note that the real orthogonal bases for the left and right eigenspaces were
equal to the number of poles found for these models, see also Section 2), it can also be observed
that qualitatively the improvement is smaller. For practical purposes, especially a good match in
the 104 − 105 Hz frequency range is of importance.

In [18] a 40th order reduced model of the Butterfly gyro was presented. This model was created
by computing an orthonormal basis for the Krylov space K40(K−1M,K−1b) (note that C was
neglected and in fact PRIMA [24] was applied, see [29] for more details). If the columns of X
form an orthonormal basis for this Krylov space, then the reduced system becomes

(X∗MX,X∗CX,X∗KX,X∗b, X∗c).

In Figure 2 the Bode plot of this 40th order model is plotted together with the 30th and 35th order
QDPA models. In the eye norm it appears as if the 35th and 40th order model are qualitatively
the same, except near 106 Hz, where the 35th order QDPA model is more accurate. Although
the latter is confirmed by the relative error plots in Figure 3, it can also be observed that the
40th order model is more accurate in the lower frequency range. Both the 35th order QDPA and
40th order PRIMA model, however, are of acceptable accuracy. The accuracy of the QDPA model
is almost constant over the range 104 Hz to 106 Hz, while the accuracy of the PRIMA model
decreases after 105 Hz. This can be explained by the fact that the expansion point for PRIMA
was σ = 0, so that the reduced model is more accurate in the lower frequency range. The QDPA
models, on the other hand, are accurate in the neighborhood of frequencies near the imaginary
parts of the dominant poles. Although the PRIMA model can be computed in considerably less
time (about 20s), it will not always produce more accurate reduced models. If the imaginary
parts of the dominant poles vary largely in magnitude and hence the Bode plot shows peaks
over a larger frequency range, then a single expansion point may not be sufficient to produce an
acceptable reduced model (rational Krylov methods may be used to handle this, see [10] and the
next example), while subspace accelerated QDPA finds the dominant poles automatically.

4.2 The breathing sphere

The breathing sphere, taken from [17], is a three-dimensional vibrating body and has its origin in
sound radiation analysis (acoustics). A finite element discretization leads to a second-order model
of order n = 17611, with transfer function

H(s) = c∗(sM2 + sC +K)b.

The input vector b contains the normal-velocities of each element, the state x represents the
acoustic pressure on the corresponding elements, and the output vector c selects state variables.

10



10
4

10
5

10
6

−240

−220

−200

−180

−160

−140

−120

−100

Frequency (Hz)

G
ai

n 
(d

B
)

Bodeplot

k=35
k=30
k=20
k=10
Exact
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(dash-dot-square) order modal equivalents (based on eigenspaces of 35, 30, 20 and 10 dominant
poles, respectively).
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In this experiment all elements of c are zero, except for c173 = 12. The mass matrix M is
symmetric.

The QDPA algorithm with subspace acceleration was used to compute 10, 20, 40, and 60 dom-
inant poles, using deflation strategy II described in Section 3.2. The initial shift was s0 = 2i. The
process was restarted with search spaces containing the kmin = 4 most dominant approximations
at dimension kmax = 10. All linear system solves were computed directly using the backslash
operator in Matlab. The running times are shown in Table 2. The frequency response Bode plots
of the modal equivalents of order k = 2 × 40 and k = 2 × 60 are shown in Figure 4, together
with a 40th order rational second-order Krylov model (Rational Krylov via Arnoldi (RKA)). A
second-order Krylov subspace is defined as

Gk+1(A,B,v0) = span(v0,v1, . . . ,vk),

with

v1 = Av1

vi = Avi−1 +Bvi−2, (i = 2, . . . , k).

The second-order RKA model was constructed as (W ∗MV,W ∗CV,W ∗KV,W ∗b, V ∗c), where the
columns of V and W are orthonormal bases for the second-order rational Krylov subspaces

4⋃
j=1

G10(−K̃−1
j C̃j ,−K̃−1

j M, K̃−1
j b),

and
4⋃

j=1

G10(−K̃−∗
j C̃∗j ,−K̃−∗

j M∗, K̃−∗
j c),

respectively, with K̃j = σ2
jM + σjC + K, C̃j = 2σjM + C, and interpolation points σ1 = 0.1,

σ2 = 0.5, σ3 = 1, σ4 = 5. See [4] for the complete second-order Arnoldi algorithm (SOAR) and
more details.

The 40th order SOAR model captures the response for low frequencies, but fails to match
the peaks around 0.6 rad/s and higher frequencies. The QDPA modal equivalents, on the other
hand, are more accurate in the details. The CPU time to produce the SOAR model was only
506 seconds, but it is difficult to choose the interpolation points in such a way that the model
captures more detail. QDPA computes the dominant poles automatically and consequently, the
modal equivalents capture the details (the peaks) in the frequency response.

These observations lead to the idea of filling in the missing details of the rational SOAR
model by expanding the Krylov bases V and W with the right and left eigenvectors X and
Y of dominant poles computed by QDPA: Ṽ = [V,X] and W̃ = [W,Y ], respectively. The
columns of Ṽ and W̃ are kept orthogonal, and the new reduced-order model is constructed as
(W̃ ∗MṼ , W̃ ∗CṼ , W̃ ∗KṼ , W̃ ∗b, Ṽ ∗c). Note that the number of matched moments (thanks to
SOAR [4]) is the same for this hybrid model, and also the dominant poles computed by QDPA
are poles of this model. Figure 5 shows the frequency responses of a 10th order modal equivalent
computed by QDPA with s0 = 0.6i (25 iterations, 691 seconds), the 40th order SOAR RKA model,
the hybrid model, and the exact response. The 10th order modal equivalent captures the peaks
near ω = 0.6 rad/s that the SOAR model misses. The hybrid model combines the best of the
two models, as can also be observed in the error plot in Fig. 6: the relative error near ω = 0.6
rad/s drops from O(1) to O(10−2). Adding more dominant poles leads to improvements in other
frequency ranges as well.

The other way around, the imaginary parts of the dominant poles computed by QDPA can
also be used as interpolation points for the rational SOAR models, to get better detail in the

2Communicated by J. Lampe [17].
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Table 2: Computational times for computing dominant poles and left and right eigenvectors of the
breathing sphere (n = 17611). Every iteration a solve with Q(sk) = s2kM + skC+K and (Q(sk))∗

is needed.
# poles Time (s) #iterations

10 2800 108
20 4280 156
40 13901 546
60 29880 1223
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corresponding frequency range. Given a dominant pole λ = α+βi, one can use either σ = β (real)
or σ = βi as interpolation point. According to [14, Chapter 6] real shifts have a more global effect,
while purely imaginary shifts focus more on detail, and hence is advised when trying to capture
the peaks. Figure 7 shows the frequency response of a 70th order SOAR model that was computed
using interpolation points σ1 = 0.65i, σ2 = 0.78i, σ3 = 0.93i, and σ4 = 0.1. The imaginary shifts
σ1, σ2, and σ3 correspond to the imaginary parts of the dominant poles that cause peaks between
ω = 0.6 rad/s and ω = 1 rad/s. These poles were selected from 5 poles computed by QDPA with
s0 = 0.6i (691 seconds, the same run as in the previous paragraph). For each interpolation point
a 10-dimensional dual second-order Krylov subspace was computed using SOAR (1373 seconds),
and because real bases were used in the projection, the dimension of the reduced-order model is
k = 3×20+10 = 70. This reduced model is more accurate than the previous reduced-order models,
up to ω = 1 rad/s. Although the dominant poles near the imaginary shifts are present in this
reduced-order model, this is in general not guaranteed. Nevertheless, this approach appears to be
more robust than adding dominant poles (and corresponding states) to the reduced-order model
like in the previous paragraph, albeit computationally more expensive since complex interpolation
points are needed. Combined with strategies that determine the sizes of the rational Krylov spaces
dynamically, as described in [14, Chapter 6] and [10], more efficient schemes can be designed.

5 Higher-order systems, zeros, and MIMO systems

5.1 Higher-order dynamical systems

The algorithms and techniques developed in the previous sections can be applied to higher order
polynomial transfer functions. Consider the p-th order polynomial transfer function

H(s) = c∗(spAp + sp−1Ap−1 + · · ·+ sA1 +A0)−1b,
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where Ai ∈ Rn×n and b, c ∈ Rn. Then again Newton’s method can be applied to compute the
poles of H(s) via the zeros of 1/H(s), leading to

sk+1 = sk −
c∗(sp

kAp + sp−1
k Ap−1 + · · ·+ skA1 +A0)−1b

w∗(psp−1
k Ap + (p− 1)sp−2

k Ap−1 + · · ·+ skA2 +A1)v
,

where v = (sp
kAp+sp−1

k Ap−1+· · ·+skA1+A0)−1b and w = (sp
kAp+sp−1

k Ap−1+· · ·+skA1+A0)−∗c.
Since the poles are eigenvalues of the polynomial eigenproblem (PEP)

(λp
iAp + λp−1

i Ap−1 + · · ·+ λiA1 +A0)xi = 0, xi 6= 0,

y∗i (λp
iAp + λp−1

i Ap−1 + · · ·+ λiA1 +A0) = 0, yi 6= 0,

for i = 1, . . . , np, a stopping criterion is

||(sp
k+1Ap + sp−1

k+1Ap−1 + · · ·+ sk+1A1 +A0)v||2 < ε, ε� 1.

The vectors x = v and y = w are the corresponding approximate right and left eigenvectors of
the PEP.

Using a tedious approach similar to that in Section 2, the partial fraction representation of
H(s) becomes

H(s) = c∗X(sI − Λ)−1Λp−1Y ∗b =
pn∑
i=1

Ri

s− λi
,

where the residues are given by (cf. (8))

Ri = (c∗xi)(y∗i b)λp−1
i .

Note that the right and left eigenvectors xi and yi must be properly scaled (depending on the
linearization used, see for instance [9]). The techniques for subspace acceleration, selection and
deflation, and local convergence improvement, described in Section 3, can be generalized to higher-
order transfer functions. The modal equivalents and reduced-order models preserve the structure
of the original systems.

5.2 Transfer function zeros

In [27] it is shown how the (SA)DPA algorithms can be used for the computation of dominant
zeros via the dominant poles of the inverse transfer function. In the single-input single-output
(SISO) case, z0 ∈ C is called a transmission zero [31] if H(z0) = 0, where

H(s) = c∗(spAp + sp−1Ap−1 + · · ·+ sA1 +A0)−1b + d.

The following theorem is a straightforward generalization of Theorem 3.1 and Theorem 3.2 in [27]
and shows how inverse systems Σz = (Az

p, A
z
p−1, . . . , A

z
0,b

z, cz, dz) can be defined so that Hz(s)
is the inverse of H(s), for d = 0 and nonzero d, respectively.

Theorem 5.1. Let H(s) = c∗(spAp + sp−1Ap−1 + · · ·+ sA1 +A0)−1b.

1. If d = 0, the inverse transfer function Hz(s) = H−1(s) is

Hz(s) = cz∗(spAz
p + sp−1Az

p−1 + · · ·+ sAz
1 +Az

0)
−1bz,

where

Az
0 =

[
A0 b
−c∗ 0

]
, Az

i =
[
Ai 0
0 0

]
(i = 1, . . . p),

bz =
[
b
1

]
, cz =

[
c
1

]
, dz = 0.
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2. If d 6= 0, the inverse transfer function Hz(s) = H−1(s) is

Hz(s) = cz∗(spAz
p + sp−1Az

p−1 + · · ·+ sAz
1 +Az

0)
−1bz,

where

Az
0 = A0 − d−1bc∗, Az

i = Ai (i = 1, . . . , p),
bz = d−1b, cz = −d−1c, dz = d−1.

Proof. This proof is a generalization of the proofs of [27, Thm. 3.1] and [27, Thm. 3.2].

Consequently, the QDPA algorithm with subspace acceleration can be used to compute the
dominant zeros of higher order polynomial transfer functions via the dominant poles of the inverse
transfer function. In practice, a single implementation of the QDPA algorithm can be used to
compute both dominant poles and dominant zeros. Although Newton’s method can be applied
directly to H(s) to compute a single zero, it is not clear which selection strategy should be used
when using subspace acceleration. Because the dominant zeros are dominant poles of the inverse
transfer function, subspace accelerated QDPA can be applied with the usual selection strategy
(cf. Section 3.1), as is described in [27].

5.3 MIMO transfer functions

For a multi-input multi-output (MIMO) system{
Apx(p)(t) +Ap−1x(p−1)(t) + · · ·+A1ẋ(t) +A0x(t) = Bu(t)
y(t) = C∗x(t) +Du(t),

where Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×q, x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq and D ∈ Rq×m, the
transfer function H(s) : C −→ Cq×m is defined as

H(s) = C∗(spAp + sp−1Ap−1 + · · ·+ sA1 +A0)−1B +D. (14)

The dominant poles of (14) are those s ∈ C for which σmax(H(s)) → ∞. For square transfer
functions (m = q), there is an equivalent criterion: the dominant poles are those s ∈ C for which
λmin(H−1(s)) → 0. This leads, for square transfer functions, to the following Newton scheme
(cf. (11)):

sk+1 = sk −
1

µmin

1
v∗C∗(Q(sk))−1Q′(sk)(Q(sk))−1Bu

,

where (µmin,u,v) is the eigentriplet of H−1(sk) corresponding to λmin(H−1(sk)), and

Q(λ) = λpAp + λp−1Ap−1 + · · ·+ λA1 +A0.

An algorithm for computing the dominant poles of a MIMO transfer function can readily be
derived from Alg. 1. The reader is referred to [21] for the initial MIMO DPA algorithm and to
[25] for an algorithm similar to SADPA and generalizations to non-square MIMO systems.

6 Conclusions

The Quadratic Dominant Pole Algorithm (QDPA) presented in this paper is an efficient and effec-
tive method for the computation of dominant poles of transfer functions of large-scale second-order
dynamical systems. Subspace acceleration improves the global convergence, while the inexpensive
deflation strategy makes QDPA able to compute more than one dominant pole automatically,
without the risk of computing already found poles again. Another advantage of QDPA is that no
linearization of the system is needed, since QDPA computes with the original system matrices.
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The dominant poles and corresponding left and right eigenvectors can be used to construct
structure-preserving modal equivalents. The dominant eigenspaces can be combined with (second-
order) Krylov subspaces (SOAR) to produce reduced-order models of better quality than com-
puted by both methods independently. Furthermore, interpolation points for rational second-
order Krylov methods can be based on the (imaginary part) of the dominant poles. Numerical
experiments confirmed that accurate reduced-order models can be computed this way.

QDPA can be generalized to MIMO systems and higher-order systems, and can be used for
the computation of dominant zeros as well.
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